Skip to main content
Log in

Agrobacterium-mediated transformation as a useful tool for the molecular genetic study of the phytopathogen Curvularia lunata

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In order to explore the molecular mechanisms of virulence and genetic variance of Curvularia lunata in maize, an ATMT (Agrobacterium tumefaciens-mediated transformation) system was established in order to create a wide range of insertional transformants of C. lunata. Our results showed that the germinating conidia were the ideal starting material for transformation. Based on our optimised transformation condition, the transformation efficiency of C. lunata with T-DNA was improved greatly, and the average transformation frequency was as high as 84 ± 5 transformants per 1 × 106 germlings. Southern blotting results of 39 randomly-selected transformants showed a unique hybridisation pattern and predominant single-copy insertions. An ATMT library containing approximate 3000 transformants was generated, and four types of transformants were screened in terms of growth rate, sporulation, mycelial pigmentation, and toxin production in vitro. This library will be used to identify genes involved in the virulence of the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abuodeh, R. O., Orbach, M. J., Mandel, M. A., Das, A., & Galgiani, J. N. (2000). Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. Journal of Infection Disease, 181, 2106–2110.

    Article  CAS  Google Scholar 

  • Akamatsu, H., Itoh, Y., Kodama, M., Otani, H., & Kohmoto, K. (1997). AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology, 87, 967–972.

    Article  CAS  PubMed  Google Scholar 

  • Balhadere, P. V., Foster, A. J., & Talbot, N. J. (1999). Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Molecular Plant-Microbe Interactions, 12, 129–142.

    Article  CAS  Google Scholar 

  • Cary, J. W., & Calvo, A. (2008). Regulation of Aspergillus mycotoxin biosynthesis. Toxin Reviews, 3–4, 347–370.

    Article  Google Scholar 

  • Combier, J. P., Melayah, D., Raffier, C., Gay, G., & Marmeisse, R. (2003). Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiology Letters, 220, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Covert, S. F., Kapoor, P., Lee, M. H., Briley, A., & Nairn, C. J. (2001). Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycological Research, 105, 259–264.

    Article  CAS  Google Scholar 

  • Dai, F. C., Gao, W. D., Wu, R. J., & Jin, X. H. (1995). A noticeable corn disease: Curvularia leaf spot. ACTA Phytopathologica Sinica, 25, 330.

    Google Scholar 

  • Dai, F. C., Wang, X. M., Zhu, Z. D., Gao, W. D., & Huo, N. X. (1998). Curvularia leaf spot of maize: pathogens and varietal resistance. ACTA Phytopathologica Sinica, 2, 123–129.

    Google Scholar 

  • de Groot, M. J., Bundock, P., Hooykaas, P. J., & Beijersbergen, A. G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 16, 839–842.

    Article  PubMed  Google Scholar 

  • Epstein, L., Lusnak, K., & Kaur, S. (1998). Transformation-mediated developmental mutants of Glomerella graminicola (Colletotrichum graminicola). Fungal Genetics and Biology, 23, 189–203.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Gao, Z. G., Xue, C. S., Zhuang, J. H., Chen, J., & Bai, S. Y. (2002). The pathogenesis of the cell-degrading enzymes produced by Curvularia lunata. Rain Fed Crops, 22, 164–166.

    Google Scholar 

  • Flowers, J. L., & Vaillancourt, L. J. (2005). Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola. Current Genetics, 48, 380–388.

    Article  CAS  PubMed  Google Scholar 

  • Hicks, J. K., Yu, J. H., Keller, N. P., & Adams, T. H. (1997). Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO Journal, 16, 4916–4923.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, I., Ohara, T., & Namiki, F. (2001). & Tsuge, T. Isolation of pathogenicity mutants of Fusarium oxysporum f. sp. melonis by insertional mutagenesis. Journal of General Plant Pathology, 67, 191–199.

    CAS  Google Scholar 

  • Kellner, E. M., Orsborn, K. I., Siegel, E. M., Mandel, M. A., Orbach, M. J., & Galgiani, J. N. (2005). Coccidioides posadasii contains a single 1, 3-beta-glucan synthase gene that appears to be essential for growth. Eukaryot Cell, 4, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kodama, M., Akamatsu, H., Itoh, Y., Narusaka, Y., Sanekata, T., Otani, H., et al. (1998). Host-specific toxin deficient mutants of the tomato pathotype of Alternaria alternata obtained by restriction enzyme-mediated integration. In K. Kohmoto & O. C. Yoder (Eds.), Molecular Genetics of Host-Specific Toxins in Plant Diseases (pp. 35–42). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Li, J. T., Fu, J. F., Yan, X. R., Li, H. C., & Zhou, R. J. (2006). Analysis of temporal dynamics of Curvularia leaf spot of maize (Curvularia lunata) epidemic and yield loss. Journal of Shenyang Agriculture University, 6, 835–839.

    Google Scholar 

  • Li, M. X., Gong, X. Y., Zheng, J., Jiang, D. H., Fu, Y. P., & Hou, M. S. (2005). Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum with Agrobacterium tumefaciens. FEMS Microbiology Letters, 243, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Linnemannstons, P., Voss, T., Hedden, P., Gaskin, P., & Tudzynski, B. (1999). Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Applied and Environment Microbiology, 65, 2558–2564.

    CAS  Google Scholar 

  • Liu, S., Wei, R., Arie, T., & Yamaguchi, I. (1998). REMI mutagenesis and identification of pathogenic mutants in blast fungus (Magnaporthe grisea). Chinese Journal of Biotechnology, 14, 133–139.

    CAS  PubMed  Google Scholar 

  • Liu, T., Liu, L. X., Jiang, X., Huang, X. L. & Chen J. (2009). Identification of a toxin produced by Curvularia lunata causing Curvularia leaf spot of maize. Canadia Journal of Plant Pathology, 31, 1–6.

    CAS  Google Scholar 

  • Loppnau, P., Tanguay, P., & Breuil, C. (2004). Isolation and disruption of the melanin pathway polyketide synthase gene of the softwood deep stain fungus Ceratocystis resinifera. Fungal Genetics and Biology, 41, 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Macri, F., & Lenna, P. (1974). Leaf corn blight incited by Curvularia lunata (Wakk.) Boed. Journal of Plant Pathology, 10, 27–35.

    Google Scholar 

  • Macri, F., &Vianello, A. (1976). Isolation and partial characterization of phytotoxins from Curvularia lunata (Wakk.) Boed. Physiological Plant Pathalogy, 8, 325–331.

  • McClelland, C. A., Chang, Y. C., & Kwon-Chung, K. J. (2005). High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens. Fungal Genetics and Biology, 42, 904–913.

    Article  CAS  PubMed  Google Scholar 

  • Michielse, C. B., Hooykaas, P. J., van den Hondel, C. A., & Ram, A. F. (2005). Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 48, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Michielse, C. B., Salim, K., Ragas, P., Ram, A. F., Kudla, B., Jarry, B., et al. (2004). Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Molecular Genetics Genomics, 271, 499–510.

    Article  CAS  Google Scholar 

  • Mikosch, T. S. P., Lavrijssen, B., Sonnenberg, A. S. M., & van Griensven, L. (2001). Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Current Genetics, 39, 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Nyilasi, I., Acs, K., Papp, T., Nagy, E., & Vagvolgyi, C. (2005). Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides. Folia Microbiologica, 50, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Ochsner, U. A., Bell, S. J., O’Leary, A. L., Hoang, T., Stone, K. C., Young, C. L., et al. (2009). Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model. Journal of Antimicrobial Chemotherapy, 5, 964–971.

    Article  Google Scholar 

  • Rogers, C. W., Challen, M. P., Green, J. R., & Whipps, J. M. (2004). Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiology Letters, 241, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, O., Navarro, R. E., & Aguirre, J. (1998). Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Molecular and General Genetics, 258, 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Sweigard, J. A., Carroll, A. M., Farrall, L., Chumley, F. G., & Valent, B. (1998). Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Molecular Plant Microbe- Interactions, 11, 404–412.

    Article  CAS  PubMed  Google Scholar 

  • Thon, M. R., Nuckles, E. M., & Vaillancourt, L. J. (2000). Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Molecular Plant Microbe- Interactions, 13, 1356–1365.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji, G., Fujii, S., Fujihara, N., Hirose, C., Tsuge, S., Shiraishi, T., et al. (2003). Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. Journal of General Plant Pathology, 69, 230–239.

    Article  CAS  Google Scholar 

  • Vijn, I., & Govers, F. (2003). Agrobacterium tumefaciens- mediated transformation of the oomycete plant pathogen Phytophthora infestans. Molecular Plant Pathology, 4, 459–467.

    Article  CAS  Google Scholar 

  • Xiao, S. Q., Xue, C. S., & Shi, Y. (2006). Nature of physical and chemical and pathogenic function of toxin of Curvularia lunata (Wakker) Boed. Journal of Maize Science, 4, 138–140.

    Google Scholar 

  • Xu, S. F., Chen, J., Liu, L. X., Wang, X. F., Huang, X. L., & Zhai, Y. H. (2007). Proteomics associated with virulence differentiation of Curvularia lunata in maize in China. Journal of Integrative Plant Biology, 49, 487–496.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Programme of China (973 Programme, 2006 CB101901) and the National Science & Technology Supporting Programme of China (2006BAD08A06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Liu, L., Jiang, X. et al. Agrobacterium-mediated transformation as a useful tool for the molecular genetic study of the phytopathogen Curvularia lunata. Eur J Plant Pathol 126, 363–371 (2010). https://doi.org/10.1007/s10658-009-9541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9541-0

Keywords

Navigation