European Journal of Plant Pathology

, Volume 124, Issue 4, pp 565–575 | Cite as

Characterisation of Phytophthora infestans isolates collected from potato in Estonia during 2002–2003

  • E. Runno-Paurson
  • W. E. Fry
  • K. L. Myers
  • M. Koppel
  • M. Mänd


A collection of 101 isolates of Phytophthora infestans, obtained from seven sampling sites representing central, east and south-east Estonia during 2002 and 2003 were assessed for several phenotypic and genotypic markers. All 101 isolates were assessed for virulence and resistance to metalaxyl. Virulence to each of the 11 classic resistance genes was found among the tested isolates. The mean number of virulences per isolate was 6.3, with a very low frequency of virulence against resistance genes R5 (5%) and R9 (14%). The most common pathotypes were and, representing altogether 12% of the studied strains. In terms of metalaxyl resistance, 30 resistant, 52 intermediate and 19 sensitive isolates were found. A subgroup of 50 isolates was assessed for mating type, allozymes [glucose-6-phosphate isomerase (Gpi) and peptidase (Pep)], DNA fingerprints with probe RG57 and mtDNA haplotype. Of this subset, 30 were A1 and 20 were A2. Collections from three of the seven fields contained both mating types. Allozyme analysis did not reveal any polymorphism. However, 19 diverse RG57 fingerprints were detected, and two mitochondrial DNA haplotypes, Ia and IIa, were detected. By combining the mating type, mtDNA haplotype and RG57 fingerprint data, 26 multilocus genotypes were identified, of which 18 were detected only once. Genotypic diversity measured by the normalised Shannon diversity index was high (0.76). The large number of multilocus genotypes and the presence of both mating types in some fields indicate that sexual reproduction may take place in Estonian populations of P. infestans.


Diversity Mating type Metalaxyl resistance mtDNA RG57 fingerprinting Virulence phenotype 



The study was supported by Estonian Foundation Grant no. 4734, 6098 and 7391. Renate Lebecka (Plant Breeding and Acclimatisation Institute, Mlochow, Poland) is highly acknowledged for providing differential genotypes. Triinu Remmel (Tartu University) is acknowledged for statistical analyses.


  1. Anderson, B., Sandström, M., & Strömberg, A. (1998). Indication of soil-borne inoculum of Phytophthora infestans. Potato Research, 41, 305–310. doi: 10.1007/BF02358962.CrossRefGoogle Scholar
  2. Andrivon, D. (1994). Races of Phytophthora infestans in France, 1991–1993. Potato Research, 37, 279–286. doi: 10.1007/BF02360520.CrossRefGoogle Scholar
  3. Bakonyi, J., Láday, M., Dula, T., & Érsek, T. (2002a). Characterisation of isolates of Phytophthora infestans from Hungary. European Journal of Plant Pathology, 108, 139–146. doi: 10.1023/A:1015035319685.CrossRefGoogle Scholar
  4. Bakonyi, J., Heremans, B., & Jamart, G. (2002b). Characterization of Phytophthora infestans isolates collected from potato in Flanders, Belgium. Phytopathology, 150, 512–516. doi: 10.1046/j.1439-0434.2002.00778.x.CrossRefGoogle Scholar
  5. Brurberg, M. B., Hannukala, A., & Hermansen, A. (1999). Genetic variability of Phytophthora infestans in Norway and Finland as revealed by mating type and fingerprint probe RG57. Mycological Research, 12, 1609–1615. doi: 10.1017/S0953756299008771.CrossRefGoogle Scholar
  6. Caten, C. E., & Jinks, J. L. (1968). Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Canadian Journal of Botany, 46, 329–348. doi: 10.1139/b68-055.CrossRefGoogle Scholar
  7. Cooke, L., Carlisle, D. J., Donaghy, C., Quinn, M., Perez, F. M., & Deahl, K. L. (2006). The Northern Ireland Phytophthora infestans population 1998-2002 characterized by genotypic and phenotypic markers. Plant Pathology, 55, 320–330. doi: 10.1111/j.1365-3059.2006.01335.x.CrossRefGoogle Scholar
  8. Day, J. P., & Shattock, R. C. (1997). Aggressiveness and other factors relating to displacement of populations of Phytophthora infestans in England and Wales. European Journal of Plant Pathology, 103, 379–391. doi: 10.1023/A:1008630522139.CrossRefGoogle Scholar
  9. Day, J. P., Wattier, R. A. M., Shaw, D. S., & Shattock, R. C. (2004). Phenotypic and genotypic diversity in Phytophthora infestans on potato in Great Britain, 1995–98. Plant Pathology, 53, 303–315. doi: 10.1111/j.0032-0862.2004.01004.x.CrossRefGoogle Scholar
  10. Drenth, A., Tas, I. C. Q., & Govers, F. (1994). DNA fingerprinting uncovers a new sexually reproducing population of Phytophthora infestans in the Netherlands. European Journal of Plant Pathology, 100, 97–107. doi: 10.1007/BF01876244.CrossRefGoogle Scholar
  11. Elansky, S., Smirnov, A., Dyakov, Y., Dolgova, A., Filippov, A., Kozlovski, B., et al. (2001). Genotypic analysis of Russian isolates of Phytophthora infestans from the Moscow region. Siberia and Far East. Phytopathology, 149, 605–611.Google Scholar
  12. Fry, W. E., Goodwin, S. B., Dyer, A. T., Matuszak, J. M., Drenth, A., Tooley, P. W., et al. (1993). Historical & recent migrations of Phytophthora infestans: chronology, pathways, and implications. Plant Disease, 77, 653–661.Google Scholar
  13. Fry, W. E., Goodwin, S. B., Matuszak, J. M., Spielman, L. J., Milgroom, M. G., & Drenth, A. (1992). Population genetics and intercontinental migrations of Phytophthora infestans. Annual Review of Phytopathology, 30, 107–129. doi: 10.1146/ Scholar
  14. Gisi, U., & Cohen, Y. (1996). Resistance to phenylamide fungicides: A case study with Phytophthora infestans involving mating type and race structure. Annual Review of Phytopathology, 34, 549–572. doi: 10.1146/annurev.phyto.34.1.549.PubMedCrossRefGoogle Scholar
  15. Goodwin, S. B., Drenth, A., & Fry, W. E. (1992). Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Current Genetics, 22, 107–115. doi: 10.1007/BF00351469.PubMedCrossRefGoogle Scholar
  16. Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Planglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences of the United States of America, 91, 11591–11595. doi: 10.1073/pnas.91.24.11591.PubMedCrossRefGoogle Scholar
  17. Goodwin, S. B., Schneider, R. E., & Fry, W. E. (1995). Use of cellulose acetate electrophoresis for rapid identification of allozyme genotypes of Phytophthora infestans. Plant Disease, 79, 1181–1185.Google Scholar
  18. Goodwin, S. B., Smart, C. D., Sandrock, R. W., Deahl, K. L., Punja, Z. K., & Fry, W. E. (1998). Genetic change within populations of Phytophthora infestans in the United States and Canada during 1994 to 1996: Role of migration and recombination. Phytopathology, 88, 939–949. doi: 10.1094/PHYTO.1998.88.9.939.PubMedCrossRefGoogle Scholar
  19. Griffith, G. W., & Shaw, D. S. (1998). Polymorphisms in Phytophthora infestans: Four mitochondrial haplotypes are detected after PCR amplification of DNA from pure cultures or from host tissue. Applied and Environmental Microbiology, 64, 4007–4014.PubMedGoogle Scholar
  20. Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., & Rahkonen, A. (2007). Late-blight epidemics on potato in Finland, 1933-2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56, 167–176. doi: 10.1111/j.1365-3059.2006.01451.x.CrossRefGoogle Scholar
  21. Hermansen, A., Hannukkala, A., Hafskjold Naerstad, R., & Brurberg, M. B. (2000). Variation in populations of Phytophthora infestans in Finland and Norway: mating type, metalaxyl resistance and virulence phenotype. Plant Pathology, 49, 11–22. doi: 10.1046/j.1365-3059.2000.00426.0078.CrossRefGoogle Scholar
  22. Knapova, G., & Gisi, U. (2002). Phenotypic and genotypic structure of Phytophthora infestans populations on potato and tomato in France and Switzerland. Plant Pathology, 51, 641–653. doi: 10.1046/j.1365-3059.2002.00750.x.CrossRefGoogle Scholar
  23. Lebreton, L., & Andrivon, D. (1998). French isolates of Phytophthora infestans from potato and tomato differ in phenotype and genotype. European Journal of Plant Pathology, 104, 583–594. doi: 10.1023/A:1008662518345.CrossRefGoogle Scholar
  24. Lehtinen, A., Hannukkala, A., Rantanen, T., & Jauhiainen, L. (2006). Phenotypic and genetic variation in Finnish potato-late blight populations, 1997-2000. Plant Pathology, 56, 480–491. doi: 10.1111/j.1365-3059.2006.01556.x.CrossRefGoogle Scholar
  25. Malcolmson, J. F., & Black, W. (1966). New R genes in Solanum demissum Lindl. and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica, 15, 199–203. doi: 10.1007/BF00022324.CrossRefGoogle Scholar
  26. Mayton, H., Smart, C. D., Moravec, B. C., Mizubuti, E. S. G., Muldoon, A. E., & Fry, W. E. (2000). Oospore survival and pathogenicity of single oospore recombinant progeny from a cross involving US-17 and US-8 genotypes of Phytophthora infestans. Plant Disease, 84, 1190–1196. doi: 10.1094/PDIS.2000.84.11.1190.CrossRefGoogle Scholar
  27. Nagy, Z. Á., Bakonyi, J., Som, V., & Érsek, T. (2006). Genetic diversity of the population of Phytophthora infestans in Hungary. Acta Phytopathologica et Entomologica Hungarica, 41, 53–67. doi: 10.1556/APhyt.41.2006.1-2.6.CrossRefGoogle Scholar
  28. Schöber, R., & Turkensteen, L. J. (1992). Recent and future developments in potato fungal pathology. Netherlands Journal of Plant Pathology, 98(Suppl 2), 73–83. doi: 10.1007/BF01974474.CrossRefGoogle Scholar
  29. Sheldon, A. L. (1969). Equitability indices: Dependence on the species count. Ecology, 50, 466–467. doi: 10.2307/1933900.CrossRefGoogle Scholar
  30. Śliwka, J., Sobkowiak, S., Lebecka, R., Avendańo Córcoles, J., & Zimnoch-Guzowska, E. (2006). Mating type, virulence, aggressiveness and metalaxyl resistance of isolates of Phytophthora infestans in Poland. Potato Research, 49(3), 155–166.Google Scholar
  31. Spielman, L. J., Drenth, A., Davidse, L. C., Sujkowski, L. J., Gu, W., Tooley, P. W., et al. (1991). A second world-wide migration and population displacement of Phytophthora infestans?. Plant Pathology, 40, 422–430. doi: 10.1111/j.1365-3059.1991.tb02400.x.CrossRefGoogle Scholar
  32. Sujkowski, L. S., Goodwin, S. B., Dyer, A. T., & Fry, W. E. (1994). Increased genotypic diversity via migration and possible occurrence of sexual reproduction of Phytophthora infestans in Poland. Phytopathology, 84, 201–207. doi: 10.1094/Phyto-84-201.CrossRefGoogle Scholar
  33. Sujkowski, L. S., Goodwin, S. B., & Fry, W. E. (1996). Changes in specific virulence in Polish populations of Phytophthora infestans: 1985–91. European Journal of Plant Pathology, 102, 555–561. doi: 10.1007/BF01877022.CrossRefGoogle Scholar
  34. Turkensteen, L. J., Flier, W. G., Wanningen, R., & Mulder, A. (2000). Production, survival and infectivity of oospores of Phytophthora infestans. Plant Pathology, 49, 688–696. doi: 10.1046/j.1365-3059.2000.00515.x.CrossRefGoogle Scholar
  35. Vorobyeva, Y. V., Gridnev, V. V., Bashaeva, E. G., Pospelova, L. A., Kvasnyuk, N.Y., Kuznetsova, L. N., et al. (1991). On the occurrence of the A2 mating type isolates of Phytophthora infestans (Mont.) d by. in the USSR. Mikologija i fitopatologija, pp.62–67.Google Scholar
  36. Zimnoch-Guzowska, E. (1999). Late blight and blight research in Central and Eastern Europe. In: Proceedings of the Global Initiative on Late Blight Conference. Late Blight: A Threat to Global Food Security Vol 1, pp. 9–14.Google Scholar
  37. Zwankhuizen, M. J., Govers, F., & Zadoks, J. C. (2000). Inoculum sources and genotypic diversity of Phytophthora infestans in Southern Flevoland, the Netherlands. European Journal of Plant Pathology, 106, 667–680. doi: 10.1023/A:1008756229164.CrossRefGoogle Scholar

Copyright information

© KNPV 2009

Authors and Affiliations

  • E. Runno-Paurson
    • 1
    • 3
  • W. E. Fry
    • 2
  • K. L. Myers
    • 2
  • M. Koppel
    • 3
  • M. Mänd
    • 1
  1. 1.Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
  2. 2.Department of Plant PathologyCornell UniversityIthacaUSA
  3. 3.Department of Biochemistry and Plant ProtectionJõgeva Plant Breeding InstituteJõgeva alevikEstonia

Personalised recommendations