Skip to main content
Log in

Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Antibiosis is assumed to be an essential mechanism exerted by potential biocontrol agents (BCAs) of Trichoderma spp. Therefore, in the present study, we report for the first time on the elucidation and production of viridiofungin A (VFA) from T. harzianum isolate T23 cultures and investigate the antifungal potential of VFA and some other secondary metabolites purified from T. harzianum cultures against Fusarium moniliforme. The bioautography assay revealed that T. harzianum isolates T16 and T23 excreted several secondary metabolites with antifungal activity. Following isolation and purification of the antifungal zones, three fractions (F223, F323 and F423) from extracts of isolate T23 and two fractions (F416 and F516) from extracts of isolate T16 exhibited pronounced fungitoxic activity in the bioautography and antibiotic disk assays against Cladosporium spp. and F. moniliforme, respectively. The structure of the antifungal metabolite in fraction F323 was identified as viridiofungin A (VFA), the first report of production of VFA by isolate T23 of T. harzianum. Following cultivation of isolate T23 in PDB medium for 9 days, 94.6 mg l−1 of VFA were determined. VFA and fraction F516 retarded the mycelial growth of F. moniliforme in the non-volatile phase assay by >90% for each 250 μg ml−1 7 days post-inoculation (dpi). While VFA and fraction F416 showed both volatile and non-volatile effects, fraction F516 seemed to exhibit mainly non-volatile activity. Microscopic examination revealed that hyphae of F. moniliforme grown on VFA-amended medium were less branched and appeared thicker than untreated hyphae. Furthermore, in the presence of VFA, formation of chlamydospores by F. moniliforme was increased. Finally, the antifungal spectrum of VFA towards various important plant pathogens was evaluated. Germination of propagules of a variety of fungal pathogens in vitro was differentially inhibited by VFA. While in the presence of 100 μg ml−1 VFA conidial germination of V. dahliae was completely inhibited, a slightly higher concentration (150 μg ml−1) of the inhibitor was required to suppress germination of Phytophthora infestans sporangia or sclerotia of Sclerotinia sclerotiorum. Contrary to several reports in the literature, VFA proved to be fungistatic rather than fungicidal. However, neither VFA nor the other Trichoderma metabolites, such as 6PAP, F416 and F516, exhibited any antibacterial activity against Gram-positive and Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almassi, F., Ghisalberti, E. L., Narbey, M. J., & Sivasithamparam, K. (1991). New antibiotics from isolates of Trichoderma harzianum. Journal of Natural Products, 54, 396–402. doi:10.1021/np50074a008.

    Article  CAS  Google Scholar 

  • Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., et al. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46, 24–35. doi:10.1016/j.biocontrol.2008.01.003.

    Article  Google Scholar 

  • Botz, L., Nagy, S., & Kocsis, B. (2001). Detection of microbiologically active compounds. In Sz Nyiredy (Ed.), Planar chromatography, a retrospective view for the third millennium (pp. 489–516). Budapest: Springer Scientific.

    Google Scholar 

  • Buchenauer, H. (1998). Biological control of soil-borne diseases by rhizobacteria. Journal of Plant Diseases and Protection, 105(4), 329–348.

    Google Scholar 

  • Butt, T. M., Jackson, C., & Magan, N. (2001). Fungi as biocontrol agents: Progress, problems and potential p. 390. London: CABI Publishing.

    Google Scholar 

  • Carpenter, J. B. (1942). A toximetric study of some eradicant fungicides. Phytopathology, 32, 845–856.

    CAS  Google Scholar 

  • Chet, I. (1987). Trichoderma: Application, mode of action and potential as a biocontrol agent of soil borne plant pathogenic fungi. In I. Chet (Ed.), Innovative approaches to plant disease control (pp. 137–160). New York: Wiley.

    Google Scholar 

  • Collins, R. P., & Halim, A. F. (1972). Characterization of the major aroma constituents of the fungus Trichoderma viride (Pers.). Journal of Agricultural and Food Chemistry, 20, 437–438. doi:10.1021/jf60180a010.

    Article  CAS  Google Scholar 

  • Cook, R. J. (1991). Twenty-five years of progress towards biological control. In D. Hornby (Ed.), Biological control of soil-borne plant pathogens (pp. 1–14). Oxon: CAB International.

    Google Scholar 

  • Dennis, C., & Webster, J. (1971). Antagonistic properties of species groups of Trichoderma I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 57, 25–39.

    Article  CAS  Google Scholar 

  • El-Hasan, A., Walker, F., Schöne, J., & Buchenauer, H. (2007). Antagonistic effect of 6-pentyl-alpha-pyrone produced by Trichoderma harzianum toward Fusarium moniliforme. Journal of Plant Diseases and Protection, 114(2), 62–68.

    CAS  Google Scholar 

  • Fravel, D. R., Connick, W. J., & Lewis, J. A. (1998). Formulation of microorganisms to control plant diseases. In H. D. Burges (Ed.), Formulation of microbial biopesticides: Beneficial microorganisms, nematodes and seed treatments (pp. 187–202). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Fujiwara, A., Okuda, T., Masuda, S., Shiomi, Y., Miyamoto, C., Sekine, Y., et al. (1982). Fermentation, isolation and characterization of isonitrile antibiotics. Agricultural and Biological Chemistry, 46, 1803–1809.

    CAS  Google Scholar 

  • Ghisalberti, E. L., & Sivasithamparam, K. (1991). Antifungal antibiotics produced by Trichoderma spp. Soil Biology & Biochemistry, 23, 1011–1020. doi:10.1016/0038-0717(91)90036-J.

    Article  CAS  Google Scholar 

  • Harman, G. E. (2000). Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84(4), 377–393. doi:10.1094/PDIS.2000.84.4.377.

    Article  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. doi:10.1038/nrmicro797.

    Article  PubMed  CAS  Google Scholar 

  • Harris, G. H., Turner, E. T., Meinz, M. S., Nallin-Omstead, M., Helms, G. L., Bills, G. F., et al. (1993). Isolation and structure elucidation of viridiofungins A, B and C. Tetrahedron Letters, 34(33), 5235–5238. doi:10.1016/S0040-4039(00)73961-X.

    Article  CAS  Google Scholar 

  • Howell, C. R. (1998). The role of antibiosis in biocontrol. In G. E. Harman, & C. P. Kubicek (Eds.), Trichoderma & Gliocladium, vol. 2 (pp. 173–184). Padstow: Taylor & Francis.

    Google Scholar 

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87, 4–10. doi:10.1094/PDIS.2003.87.1.4.

    Article  Google Scholar 

  • Howell, C. R., & Stipanovic, R. D. (1983). Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Canadian Journal of Microbiology, 29, 321–324.

    Article  CAS  Google Scholar 

  • Kadakal, C., Nas, S., & Ekinci, R. (2005). Ergosterol as a new quality parameter together with patulin in raw apple juice produced from decayed apples. Food Chemistry, 90(1–2), 95–100. doi:10.1016/j.foodchem.2004.03.030.

    Article  CAS  Google Scholar 

  • Lumsden, R. D., Lewis, J. A., & Fravel, D. R. (1995). Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In F. R. Hall, & J. W. Barry (Eds.), Biorational pest control agents: Formulation and delivery (pp. 166–182). Washington DC: American Chemical Society.

    Google Scholar 

  • Mandal, D. N., & Chaudhuri, S. (1990). Induction of chlamydospore in Fusarium moniliforme. Indian Phytopathology, 43, 420–426.

    Google Scholar 

  • Mandala, S. M., Thornton, R. A., Frommer, B. R., Dreikorn, S., & Kurtz, M. B. (1997). Viridiofungins, novel inhibitors of sphingolipid synthesis. The Journal of Antibiotics, 50(4), 339–343.

    PubMed  CAS  Google Scholar 

  • Manzo, S. K., & Claflin, L. E. (1984). Survival of Fusarium moniliforme hyphae and conidia in grain sorghum stalks. Plant Disease, 68, 866–867. doi:10.1094/PD-69-866.

    Article  Google Scholar 

  • Meinz, M. S., Pelaez, F., Omstead, M. N., Milligan, J. A., Diez, M. T., Onishi, J. C., et al. (1993). Novel squalene synthetase inhibitors. Eur. Pat. Appl. EP 526,936 (Cl. C07C235/76). Chemical Abstracts, 118, 183428t.

    Google Scholar 

  • Metcalf, D. D., & Wilson, C. R. (2001). The process of antagonism of Sclerotium cepivorum in white rot affected onion roots by Trichoderma koningii. Plant Pathology, 50, 249–257. doi:10.1046/j.1365-3059.2001.00549.x.

    Article  CAS  Google Scholar 

  • Moffatt, J. S., Bu’Lock, J. D., & Yuen, T. H. (1969). Viridiol, a steroid-like product from Trichoderma viride. Journal of the Chemical Society. Chemical Communications, 14, 839.

    Google Scholar 

  • Nakayama, H., Izuta, M., Nakayama, N., Arisawa, M., & Aoki, Y. (2000). Depletion of the squalene synthase (ERG9) gene does not impair growth of Candida glabrata in mice. Antimicrobial Agents and Chemotherapy, 44, 2411–2418. doi:10.1128/AAC.44.9.2411-2418.2000.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, J. C., Milligan, J. A., Basilio, A., Bergstrom, J., Curotto, J., Huang, L., et al. (1997). Antimicrobial activity of viridiofungins. The Journal of Antibiotics, 50(4), 334–338.

    PubMed  CAS  Google Scholar 

  • Pedersen, E. A., Reddy, M. S., & Chakravarty, P. (1999). Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. Forest Pathology, 29(2), 123–134. doi:10.1046/j.1439-0329.1999.00146.x.

    Article  Google Scholar 

  • Reino, J. L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123. doi:10.1007/s11101-006-9032–2.

    Article  CAS  Google Scholar 

  • Sholberg, P. L., Bedford, K. E., Haag, P., & Randall, P. (2001). Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple. Canadian Journal of Plant Pathology, 23(1), 60–67.

    CAS  Google Scholar 

  • Venkat Ram, C. S. (1952). Soil bacteria and chlamydospore formation in Fusarium solani. Nature, 170(4334), 889. doi:10.1038/170889a0.

    Article  PubMed  CAS  Google Scholar 

  • Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp. Panoply of biological control. Biochemical Engineering Journal, 37, 1–20. doi:10.1016/j.bej.2007.05.012.

    Article  Google Scholar 

  • Vey, A., Hoagland, R. E., & Butt, T. M. (2001). Toxic metabolites of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems and potential (pp. 311–346). Bristol: CAB International.

    Google Scholar 

  • Weindling, R. (1932). Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 22, 837–845.

    Google Scholar 

  • Wittinghofer, A., & Waldmann, H. (2000). Ras—A molecular switch involved in tumor formation. Angewandte Chemie International Edition, 39, 4192–4214. doi:10.1002/1521-3773(20001201)39:23<4192::AID-ANIE4192>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  • Yedidia, I., Srivastva, A. K., Kapulnik, Y., & Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235, 235–242. doi:10.1023/A:1011990013955.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge all colleagues for their helpful assistance in the chemical analysis and identification of viridiofungin A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas El-Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Hasan, A., Walker, F., Schöne, J. et al. Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur J Plant Pathol 124, 457–470 (2009). https://doi.org/10.1007/s10658-009-9433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9433-3

Keywords

Navigation