European Journal of Plant Pathology

, Volume 124, Issue 1, pp 171–174 | Cite as

Somatic embryogenesis from anthers of the autochthonous Vitis vinifera cv. Domina leads to Arabis mosaic virus-free plants

  • E. G. Borroto-Fernandez
  • T. Sommerbauer
  • E. Popowich
  • A. Schartl
  • M. Laimer


Attempts to conserve and utilise autochthonous grapevine germplasm in modern breeding programmes, are sometimes faced with the challenge that virus-free plants of old grapevine varieties and clones are hard to find. From 50 year-old vineyards in Frankonia the Vitis vinifera cv. Domina was selected showing particularly interesting loose-bunch architecture with fewer berries. However this valuable germplasm was carrying an Arabis mosaic virus (ArMV) infection requiring a reliable and effective method to produce healthy mother plants for clonal selection. Somatic embryogenesis was established from anthers as the most promising technical approach. The absence of ArMV in 46 regenerated plant lines was confirmed by ELISA and IC-RT PCR, repeated after different time intervals in vitro and in vivo after acclimatisation, and after one dormancy period under glasshouse conditions. Morphologically, all grapevines appeared true-to-type, and a screening of 20 plants by flow cytometry to determine the ploidy level and to exclude the risk of undesired genetic variability confirmed that all tested plants were diploid. Field evaluations of the initially selected bunch traits are currently underway.


Biodiversity Fanleaf disease Vitis vinifera Tissue culture ELISA IC-RT-PCR Ploidy level 



We thank Prof. I. Greilhuber and Dr. E.-M. Temsch (Institute of Botany, University Vienna) for their support in flow cytometry.


  1. Baranyi, M., & Greilhuber, I. (1996). Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum. Theoretical and Applied Genetics, 92, 297–307. doi: 10.1007/BF00223672.CrossRefGoogle Scholar
  2. Bleser, E., Konrad, H., & Rühl, E. (2004). Perspektiven der Klonenzüchtung. Deutsches Weinbau-Jahrbuch, 56, 116–121.Google Scholar
  3. Bovey, R., Gärtel, W., Hewitt, W., Martelli, G. P., & Vuittenez, A. (1980). Virus and virus-like diseases of grapevines (pp. 1–181). Lausanne: Editions Payot.Google Scholar
  4. da Câmara Machado, A., Puschmann, M., Pühringer, H., Kremen, R., Katinger, H., & Laimer da Câmara Machado, M. (1995). Somatic embryogenesis of Prunus subhirtella autumno rosa and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Reports, 14, 335. doi: 10.1007/BF00238592.Google Scholar
  5. Das, D. K., Nirala, N. K., Reddy, M. K., Sopory, S. K., & Upadhyaya, K. C. (2006). Encapsulated somatic embryos of grape (Vitis vinifera L.): an efficient way for storage and propagation of pathogen-free plant material. Vitis, 45, 179–184.Google Scholar
  6. D’Onghia, A., Carimi, M., De Pasquale, F., Djelouah, K., & Martelli, G. P. (2001). Elimination of Citrus psorosis virus by somatic embryogenesis from stigma and style cultures. Plant Pathology, 2, 266–269. doi: 10.1046/j.1365-3059.2001.00550.x.CrossRefGoogle Scholar
  7. Franks, T., He, G. D., & Mark, T. (1998). Regeneration of transgenic Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Molecular Breeding, 4, 321. doi: 10.1023/A:1009673619456.CrossRefGoogle Scholar
  8. Gambino, G., Bondaz, J., & Gribaudo, I. (2006). Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. European Journal of Plant Pathology, 114, 397–404. doi: 10.1007/s10658-006-0004-6.CrossRefGoogle Scholar
  9. Gambino, G., Di Matteo, D., & Gribaudo, I. (2008). Elimination of Grapevine fanleaf virus from three Vitis vinifera cultivars by somatic embryogenesis. European Journal of Plant Pathology, doi: 10.1007/s10658-008-9342-x.
  10. Gölles, R., Moser, R., Pühringer, H., Katinger, H., Laimer da Câmara Machado, M., da Câmara Machado, A., et al. (2000). Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus, grapevine virus A and grapevine virus B. Acta Horticulturae, 528, 305.Google Scholar
  11. Goussard, P. G., & Wiid, J. (1992). The elimination of fanleaf virus from grapevines using in vitro somatic embryogenesis combined with heat therapy. South African Journal of Enology and Viticulture, 13, 81–83.Google Scholar
  12. Gribaudo, I., Gambino, G., & Vallania, R. (2004). Somatic embryogenesis from grapevine anthers. Identification of the optimal developmental stage for collecting explants. American Journal of Enology and Viticulture, 55, 427–430.Google Scholar
  13. Lima, M. A. V. A., Paiva, A., & Candeias, M. I. (2003). Flow cytometry—a simple method for nuclear DNA content evaluation of Vitis vinifera cv. Periquita somatic embryos obtained from anther cultures. Vitis, 42(2), 99–100.Google Scholar
  14. Martinelli, L., Zambanini, J., & Grando, M. S. (2004). Genotype assessment of grape regenerants from floral explants. Vitis, 43(2), 119–122.Google Scholar
  15. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473. doi: 10.1111/j.1399-3054.1962.tb08052.x.CrossRefGoogle Scholar
  16. Popescu, C. F., Falk, A., & Glimelius, K. (2002). Application of AFLPs to characterize somaclonal variation in anther-derived grapevines. Vitis, 41(4), 177–182.Google Scholar
  17. Popescu, C. F., Buciumeanu, E. C., & Visoiu, E. (2003). Somatic embryogenesis, a reliable method for Grapevine fleck virus-free grapevine regeneration. Extended Abstracts of the 14th ICVG Meeting, Locorotondo 1: 243.Google Scholar
  18. Rajasekaran, K., & Mullins, M. G. (1983). The Origin of Embryos and Plantlets from Cultured Anthers of Hybrid Grapevines. American Journal of Enology and Viticulture, 34(2), 108–113.Google Scholar
  19. Rühl, E. H., Konrad, K. H., & Lindner, B. (2006). Neue Klone aus alten Anlagen—Sammlung und Erhaltung genetischer Ressourcen. Deutsches Weinbau-Jahrbuch, 58, 121–125.Google Scholar
  20. Salunkhe, C. K., Rao, P. S., & Mhatre, M. (1999). Plantlet regeneration via somatic embryogenesis in anther callus of “Vitis latifolia” L. Plant Cell Reports, 18, 670–673. doi: 10.1007/s002990050640.CrossRefGoogle Scholar
  21. Schaefers, R. K., Pool, R. M., & Gonsalves, D. (1994). Somatic embryogenesis from nucellar tissue for the elimination of viruses from Grapevines. American Journal of Enology and Viticulture, 45, 472–473.Google Scholar
  22. Schartl, A., & Engelhart, J. (2005). Frankens “Alte Weinberge”—Fundorte für neue Klone? Deutsches Weinbau-Jahrbuch, 57, 122–127.Google Scholar
  23. Schenk, R. U., & Hildebrandt, A. C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50, 199. doi: 10.1139/b72-026.CrossRefGoogle Scholar
  24. Sommerbauer, T. (2004). Somatic embryogenesis of grapevine. Diploma thesis, BOKU, Vienna, Austria.Google Scholar
  25. Temsch, E.-M. (2003). Genome size variation in plant with special reference to the genus Arachis (Fabaceae), and the methodological improvement by application of a new optical immersion-gel in flow cytometry. Ph.D. Thesis, University of Vienna, Austria.Google Scholar
  26. Torres-Vinals, M., Sabate-Casaseca, S., Aktouche, N., Grenan, S., Lopez, G., Porta-Falguera, M., et al. (2004). Large-scale production of somatic embryos as a source of hypocotyl explants for Vitis vinifera micrografting. Vitis, 43(4), 163–168.Google Scholar
  27. Trudgill, D. L., Brown, D. J. F., & McNamara, D. G. (1983). Methods and criteria for assessing the transmission of plant viruses by longidorid nematodes. Revue de Nématologie, 6, 133–141.Google Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • E. G. Borroto-Fernandez
    • 1
  • T. Sommerbauer
    • 1
  • E. Popowich
    • 1
  • A. Schartl
    • 1
  • M. Laimer
    • 1
  1. 1.Plant Biotechnology Unit, IAM, Department BiotechnologyBOKUViennaAustria

Personalised recommendations