Advertisement

European Journal of Plant Pathology

, Volume 124, Issue 1, pp 163–170 | Cite as

Assessment of infection in wheat by Fusarium protein equivalent levels

  • S. Šliková
  • V. Šudyová
  • P. Martinek
  • I. Polišenská
  • E. Gregová
  • D. Mihálik
Article

Abstract

Determination of the Fusarium protein equivalent (FPE) levels in kernels for better characterisation of genotypes showing Fusarium head blight (FHB) resistance, and better detection of susceptibility to kernel infection among genotypes with slight symptom expression was carried out. Twelve wheat cultivars and eight hexaploid winter wheat lines derived from a cross of Triticum aestivum with related species T. macha, T. polonicum, and T. dicoccoides were evaluated for levels of spike and kernel infection, the content of the mycotoxin deoxynivalenol (DON) and FPE in kernels after artificial inoculation with the fungus Fusarium culmorum in the field in 2006–2007. The ELISA immunochemical method was employed for the quantitative analyses of DON and FPE. Three wheat lines had a significantly low infection of spikes and kernels compared to cvs Sumai 3 and Nobeoka Bozu, indicating the presence of specific resistance mechanisms to FHB. The significantly low AUDPC (area under the disease progress curve) and the high level of FPE and DON content in kernels indicated a lack of resistance in one wheat line (crossed with T. polonicum). The results showed highly significant correlations (P < 0.01) between FPE and DON content and between FPE and AUDPC. In addition, correlations between FPE and reductions in yield components were also highly significant. Quantification of Fusarium spp. in wheat kernels can be helpful for evaluating wheat genotypes for their levels of resistance to FHB.

Keywords

Fusarium infection Triticum aestivum AUDPC Deoxynivalenol Yield components 

Abbreviations

FPE

Fusarium protein equivalent

DON

deoxynivalenol

AUDPC

under disease progress curves

FDK

Fusarium-damaged kernels

R-TKW

reduction in 1,000-kernel weight

R-KWS

reduction in kernel weight per spike

R-KNS

reduction in kernel number per spike

Notes

Acknowledgements

The results were obtained within Research Projects No. 2006 UO 27/0910501/0910511 supported by the Ministry of Agriculture of the Slovak Republic and No. MSM 2532885901 supported by the Czech Ministry of Education, Youth and Sports.

References

  1. Abramson, D., Gan, Z., Clar, R. M., Gilbert, J., & Marquardt, R. R. (1998). Relationships among deoxynivalenol, ergosterol and Fusarium exoantigens in Canadian hard and soft wheat. International Journal of Food Microbiology, 45, 217–224. doi: 10.1016/S0168-1605(98)00164-0.PubMedCrossRefGoogle Scholar
  2. Boutigny, A. L., Richard-Forget, F., & Barreau, C. (2008). Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. European Journal of Plant Pathology, 121, 411–423. doi: 10.1007/s10658-007-9266-x.CrossRefGoogle Scholar
  3. Buerstmayr, H., Lemmens, M., & Hartl, L. (2002). Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theoretical and Applied Genetics, 104, 84–91. doi: 10.1007/s001220200009.PubMedCrossRefGoogle Scholar
  4. Burlakoti, R. R., Estrada, R., Rivera, V. V., Boddeda, A., Secor, G. A., & Adhikari, T. B. (2007). Real-time PCR Quantification and Mycotoxin Production of Fusarium graminearum in wheat inoculated with isolates collected from potato, sugar beet, and wheat. Phytopathol, 97, 835–841. doi: 10.1094/PHYTO-97-7-0835.CrossRefGoogle Scholar
  5. Cai, X., Chen, P., Xu, S., Oliver, R., & Chen, X. (2005). Utilization of alien genes to enhance Fusarium head blight resistance in wheat—a review. Euphytica, 142, 309–318. doi: 10.1007/s10681-005-2437-y.CrossRefGoogle Scholar
  6. Chala, A., Weinert, J., & Wolf, G. A. (2003). An integrated approach to the evaluation of the efficacy of fungicides against Fusarium culmorum, the cause of head blight of wheat. Journal of Phytopathology, 151, 673–678. doi: 10.1046/j.1439-0434.2003.00787.x.CrossRefGoogle Scholar
  7. Culler, M. D., Miller-Garvin, J. E., & Dill-Macky, R. (2007). Effect of extended irrigation and host resistance on deoxynivalenol accumulation in Fusarium-infected wheat. Plant Disease, 91, 1464–1472. doi: 10.1094/PDIS-91-11-1464.CrossRefGoogle Scholar
  8. Cumagun, C. J. R., Rabenstein, F., & Miedaner, T. (2004). Genetic variation and covariation for aggressiveness, deoxynivalenol production and fungal colonization among progeny of Gibberella zeae in wheat. Plant Pathology, 53, 446–453. doi: 10.1111/j.1365-3059.2004.01046.x.CrossRefGoogle Scholar
  9. Cuthbert, P. A., Somers, D. J., & Brulé-Babel, A. (2007). Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 114, 429–437. doi: 10.1007/s00122-006-0439-3.PubMedCrossRefGoogle Scholar
  10. Edwards, S. G., Pirgozliev, S. R., Hare, M. C., & Jenkinson, P. (2001). Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Applied and Environmental Microbiology, 67, 1575–1580. doi: 10.1128/AEM.67.4.1575-1580.2001.PubMedCrossRefGoogle Scholar
  11. European Commission (2006a). Commission Regulation (EC) No 1881/2006 of 19 December 2006 amending regulation (EC) setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L 364/5.Google Scholar
  12. European Commission (2006b). Commission recommendation (EC) of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding (2006/573/EC). Official Journal of the European Union, L 229/7.Google Scholar
  13. Gervais, L., Dedryver, F., Morlais, J. -Y., Bodusseau, V., Negre, S., Bilous, M., et al. (2003). Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theoretical and Applied Genetics, 106, 961–970.PubMedGoogle Scholar
  14. Gosman, N., Bayles, R., Jennings, P., Kirby, J., & Nicholson, P. (2007). Evaluation and characterization of resistance to Fusarium head blight caused by Fusarium culmorum in UK winter wheat cultivars. Plant Pathology, 56, 264–276. doi: 10.1111/j.1365-3059.2006.01508.x.CrossRefGoogle Scholar
  15. Hill, N. S., Schwarz, P., Dahleen, L. S., Neate, S. M., Horsley, R., Glenn, A. E., et al. (2006). ELISA analysis for Fusarium in barley: development of methodology and field assessment. Crop Science, 46, 2636–2642. doi: 10.2135/cropsci2006.03.0203.CrossRefGoogle Scholar
  16. Jiang, G. L., Huang, D. C., Shen, Q. L., Yang, Z. L., Lu, W. Z., Shi, J. R., et al. (2006). Registration of wheat germplasms CJ W14 and CJ 9306 highly resistant to Fusarium head blight. Crop Science, 46, 2326–2328. doi: 10.2135/cropsci2005.10.0394.CrossRefGoogle Scholar
  17. Leonard, K. J., & Bushnell, W. R. (Eds.). (2003). Fusarium head blight of wheat and barley. St. Paul, MN: The American Phytopathological Society.Google Scholar
  18. Liu, W. Z., Langseth, W., Skinnes, H., Elen, O. N., & Sundheim, L. (1997). Comparison of visual head blight ratings, seed infection levels, and deoxynivalenol production for assessment of resistance in cereals inoculated with Fusarium culmorum. European Journal of Plant Pathology, 103, 589–595. doi: 10.1023/A:1008693213656.CrossRefGoogle Scholar
  19. Mentewab, A., Rezanoor, H. N., Gosman, N., Worland, A. J., & Nicholson, P. (2000). Chromosomal location of Fusarium head blight resistance genes and analysis of the relationship between resistance to head blight and brown foot rot. Plant Breeding, 119, 15–20. doi: 10.1046/j.1439-0523.2000.00439.x.CrossRefGoogle Scholar
  20. Mesterházy, A. (1995). Types and components of resistance to Fusarium head blight of wheat. Plant Breeding, 114, 377–386. doi: 10.1111/j.1439-0523.1995.tb00816.x.CrossRefGoogle Scholar
  21. Mesterházy, A. (2003). Breeding wheat for Fusarium head blight resistance in Europe: Fusarium head blight of wheat and barley. In: Leonard K. J. & Bushnell, W. R. (Eds.), (pp. 211–240). St. Paul, MN: The American Phytopathological Society.Google Scholar
  22. Mesterházy, A., Bartók, T., Kászonyi, G., Varga, M., Tóth, B., & Varga, J. (2005). Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. European Journal of Plant Pathology, 112, 267–281. doi: 10.1007/s10658-005-2853-9.CrossRefGoogle Scholar
  23. Miedaner, T., Wilde, F., Steiner, B., Buerstmayr, H., Korzun, V., & Ebmeyer, E. (2006). Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theoretical and Applied Genetics, 112, 562–569. doi: 10.1007/s00122-005-0163-4.PubMedCrossRefGoogle Scholar
  24. Oliver, R. E., Cai, X., Xu, S. S., Chen, X., & Stack, R. W. (2005). Wheat-alien species derivatives: a novel source of resistance to Fusarium head blight in wheat. Crop Science, 45, 1353–1360.CrossRefGoogle Scholar
  25. Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathology, 44, 207–238. doi: 10.1111/j.1365-3059.1995.tb02773.x.CrossRefGoogle Scholar
  26. Perkowski, J., Pavlová, A., Šrobárová, A., Stachowiak, J., & Golinski, P. (2002). Group B trichothecene biosynthesis in wheat cultivars after head inoculation with Fusarium culmorum isolates. Biologia, 57, 765–771.Google Scholar
  27. Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–838.Google Scholar
  28. Šrobárová, A., Šliková, S., & Šudyová, V. (2008). Diversity of the Fusarium species associated with head and seedling blight on wheat in Slovakia. Biologia, 63, 332–337. doi: 10.2478/s11756-008-0050-y.CrossRefGoogle Scholar
  29. Steed, A., Chandler, E., Thomsett, M., Gosman, N., Faure, S., & Nicholson, P. (2005). Identification of type I resistance to Fusarium head blight controlled by a major gene located on chromosome 4A of Triticum macha. Theoretical and Applied Genetics, 111, 521–529. doi: 10.1007/s00122-005-2043-3.PubMedCrossRefGoogle Scholar
  30. Steiner, B., Lemmens, M., Griesser, M., Scholz, U., Schondelmaier, J., & Buerstmayr, H. (2004). Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theoretical and Applied Genetics, 109, 215–224. doi: 10.1007/s00122-004-1620-1.PubMedCrossRefGoogle Scholar
  31. Tamburic-Ilincic, L., Schaafsma, A. W., Falk, D. E., Laskar, B., Fedak, G., & Somers, D. (2006). Registration of winter wheat germplasm line RCATL33 with Fusarium head blight resistance and reduced deoxynivalenol accumulation. Crop Science, 46, 1399–1400. doi: 10.2135/cropsci2005.06-0113.CrossRefGoogle Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • S. Šliková
    • 1
  • V. Šudyová
    • 1
  • P. Martinek
    • 2
  • I. Polišenská
    • 2
  • E. Gregová
    • 1
  • D. Mihálik
    • 1
  1. 1.Slovak Agricultural Research CentreResearch Institute of Plant ProductionBratislavská cesta 122Slovak Republic
  2. 2.KroměřížCzech Republic

Personalised recommendations