Advertisement

European Journal of Plant Pathology

, Volume 123, Issue 4, pp 477–482 | Cite as

Characterisation of novel Fusarium graminearum microsatellite markers in different Fusarium species from various countries

  • Susanne Vogelgsang
  • Franco Widmer
  • Eveline Jenny
  • Jürg Enkerli
Article

Abstract

Fifteen novel microsatellite markers were isolated from Fusarium graminearum. The level of polymorphism at these novel and 13 previously published microsatellite markers was analysed in 33 F. graminearum strains from Europe, North America, and Nepal. The number of alleles for each of the novel markers ranged from 4 to 20 and gene diversity from 0.417 to 0.962. In comparison with the previously published markers, the resolution for distinguishing among different strains was slightly increased. Twenty-seven markers were also detectable in three F. culmorum strains and one F. crookwellense strain. None of the markers was detected in three F. avenaceum and four F. poae strains, underlining the potential use of these microsatellite markers for species differentiation.

Keywords

Cereals Fusarium head blight Genetic diversity Simple sequence repeat 

Notes

Acknowledgements

We thank the donors of F. graminearum strains and we are grateful to Irene Bänziger and Yvonne Häfele for excellent technical assistance.

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.PubMedGoogle Scholar
  2. Anonymous (2005). Fusarium graminearum sequencing project. Cambridge: Broad Institute of MIT and Harvard. Accessed 07.11.2007, Retrieved from http://www.broad.mit.edu/annotation/fungi/fusarium/index.html.Google Scholar
  3. Bowden, R. L., Leslie, J. F., Lee, Y., & Lee, Y. W. (2006). Cross-fertility of lineages in Fusarium graminearum (Gibberella zea). Proceedings of The Global Fusarium Initiative for International Collaboration—A Strategic Planning Workshop (pp. 54–60). El Batán, Mexico: CIMMYT.Google Scholar
  4. Excoiffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.Google Scholar
  5. Gale, L. R. (2003). Population biology of Fusarium species causing head blight of grain crops. In K. J. Leonard, & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 120–143). St. Paul, Minnesota, USA: APS.Google Scholar
  6. Giraud, T., Fournier, E., Vautrin, D., Solignac, M., Vercken, E., Bakan, B., et al. (2002). Isolation of eight polymorphic microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Fusarium culmorum. Molecular Ecology Notes, 2, 121–123. doi: 10.1046/j.1471-8286.2002.00168.x.CrossRefGoogle Scholar
  7. Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525. doi: 10.1111/j.1364-3703.2004.00252.x.CrossRefGoogle Scholar
  8. Jurgenson, J. E., Bowden, R. L., Zeller, K. A., Leslie, J. F., Alexander, N. J., & Plattner, R. D. (2002). A genetic map of Gibberella zeae (Fusarium graminearum). Genetics, 160, 1451–1460.PubMedGoogle Scholar
  9. Kristensen, R., Torp, M., Kosiak, B., & Holst-Jensen, A. (2005). Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycological Research, 109, 173–186. doi: 10.1017/S0953756204002114.PubMedCrossRefGoogle Scholar
  10. Leslie, J. F., Anderson, L. L., Bowden, R. L., & Lee, Y. W. (2007). Inter- and intra-specific genetic variation in Fusarium. International Journal of Food Microbiology, 119, 25–32. doi: 10.1016/j.ijfoodmicro.2007.07.059.PubMedCrossRefGoogle Scholar
  11. Miedaner, T., Cumagun, C. J. R., & Chakraborty, S. (2008). Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156, 129–139. doi: 10.1111/j.1439-0434.2007.01394.x.CrossRefGoogle Scholar
  12. Naef, A., & Défago, G. (2006). Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. European Journal of Plant Pathology, 116, 129–143. doi: 10.1007/s10658-006-9048-x.CrossRefGoogle Scholar
  13. Naef, A., Senatore, M., & Défago, G. (2006). A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. FEMS Microbiology Ecology, 55, 211–220. doi: 10.1111/j.1574-6941.2005.00023.x.PubMedCrossRefGoogle Scholar
  14. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press, 512 pp.Google Scholar
  15. Nicholson, P., Chandler, E., Draeger, R. C., Gosman, N. E., Simpson, D. R., Thomsett, M., et al. (2003). Molecular tools to study epidemiology and toxicology of Fusarium head blight of cereals. European Journal of Plant Pathology, 109, 691–703. doi: 10.1023/A:1026026307430.CrossRefGoogle Scholar
  16. O’Donnell, K., Kistler, H. C., Tacke, B. K., & Casper, H. H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America, 97, 7905–7910. doi: 10.1073/pnas.130193297.PubMedCrossRefGoogle Scholar
  17. O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623. doi: 10.1016/j.fgb.2004.03.003.PubMedCrossRefGoogle Scholar
  18. Suga, H., Gale, L. R., & Kistler, H. C. (2004). Development of VNTR markers for two Fusarium graminearum clade species. Molecular Ecology Notes, 4, 468–470. doi: 10.1111/j.1471-8286.2004.00703.x.CrossRefGoogle Scholar
  19. Zeller, K. A., Bowden, R. L., & Leslie, J. F. (2004). Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Molecular Ecology, 13, 563–571. doi: 10.1046/j.1365-294X.2004.02098.x.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • Susanne Vogelgsang
    • 1
  • Franco Widmer
    • 1
  • Eveline Jenny
    • 1
  • Jürg Enkerli
    • 1
  1. 1.Research Station Agroscope Reckenholz-Tänikon ARTZurichSwitzerland

Personalised recommendations