Skip to main content
Log in

Characterisation of novel Fusarium graminearum microsatellite markers in different Fusarium species from various countries

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fifteen novel microsatellite markers were isolated from Fusarium graminearum. The level of polymorphism at these novel and 13 previously published microsatellite markers was analysed in 33 F. graminearum strains from Europe, North America, and Nepal. The number of alleles for each of the novel markers ranged from 4 to 20 and gene diversity from 0.417 to 0.962. In comparison with the previously published markers, the resolution for distinguishing among different strains was slightly increased. Twenty-seven markers were also detectable in three F. culmorum strains and one F. crookwellense strain. None of the markers was detected in three F. avenaceum and four F. poae strains, underlining the potential use of these microsatellite markers for species differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    PubMed  CAS  Google Scholar 

  • Anonymous (2005). Fusarium graminearum sequencing project. Cambridge: Broad Institute of MIT and Harvard. Accessed 07.11.2007, Retrieved from http://www.broad.mit.edu/annotation/fungi/fusarium/index.html.

    Google Scholar 

  • Bowden, R. L., Leslie, J. F., Lee, Y., & Lee, Y. W. (2006). Cross-fertility of lineages in Fusarium graminearum (Gibberella zea). Proceedings of The Global Fusarium Initiative for International Collaboration—A Strategic Planning Workshop (pp. 54–60). El Batán, Mexico: CIMMYT.

  • Excoiffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.

    Google Scholar 

  • Gale, L. R. (2003). Population biology of Fusarium species causing head blight of grain crops. In K. J. Leonard, & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 120–143). St. Paul, Minnesota, USA: APS.

    Google Scholar 

  • Giraud, T., Fournier, E., Vautrin, D., Solignac, M., Vercken, E., Bakan, B., et al. (2002). Isolation of eight polymorphic microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Fusarium culmorum. Molecular Ecology Notes, 2, 121–123. doi:10.1046/j.1471-8286.2002.00168.x.

    Article  CAS  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525. doi:10.1111/j.1364-3703.2004.00252.x.

    Article  CAS  Google Scholar 

  • Jurgenson, J. E., Bowden, R. L., Zeller, K. A., Leslie, J. F., Alexander, N. J., & Plattner, R. D. (2002). A genetic map of Gibberella zeae (Fusarium graminearum). Genetics, 160, 1451–1460.

    PubMed  CAS  Google Scholar 

  • Kristensen, R., Torp, M., Kosiak, B., & Holst-Jensen, A. (2005). Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycological Research, 109, 173–186. doi:10.1017/S0953756204002114.

    Article  PubMed  CAS  Google Scholar 

  • Leslie, J. F., Anderson, L. L., Bowden, R. L., & Lee, Y. W. (2007). Inter- and intra-specific genetic variation in Fusarium. International Journal of Food Microbiology, 119, 25–32. doi:10.1016/j.ijfoodmicro.2007.07.059.

    Article  PubMed  CAS  Google Scholar 

  • Miedaner, T., Cumagun, C. J. R., & Chakraborty, S. (2008). Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156, 129–139. doi:10.1111/j.1439-0434.2007.01394.x.

    Article  Google Scholar 

  • Naef, A., & Défago, G. (2006). Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. European Journal of Plant Pathology, 116, 129–143. doi:10.1007/s10658-006-9048-x.

    Article  CAS  Google Scholar 

  • Naef, A., Senatore, M., & Défago, G. (2006). A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. FEMS Microbiology Ecology, 55, 211–220. doi:10.1111/j.1574-6941.2005.00023.x.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press, 512 pp.

    Google Scholar 

  • Nicholson, P., Chandler, E., Draeger, R. C., Gosman, N. E., Simpson, D. R., Thomsett, M., et al. (2003). Molecular tools to study epidemiology and toxicology of Fusarium head blight of cereals. European Journal of Plant Pathology, 109, 691–703. doi:10.1023/A:1026026307430.

    Article  CAS  Google Scholar 

  • O’Donnell, K., Kistler, H. C., Tacke, B. K., & Casper, H. H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America, 97, 7905–7910. doi:10.1073/pnas.130193297.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623. doi:10.1016/j.fgb.2004.03.003.

    Article  PubMed  CAS  Google Scholar 

  • Suga, H., Gale, L. R., & Kistler, H. C. (2004). Development of VNTR markers for two Fusarium graminearum clade species. Molecular Ecology Notes, 4, 468–470. doi:10.1111/j.1471-8286.2004.00703.x.

    Article  CAS  Google Scholar 

  • Zeller, K. A., Bowden, R. L., & Leslie, J. F. (2004). Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Molecular Ecology, 13, 563–571. doi:10.1046/j.1365-294X.2004.02098.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the donors of F. graminearum strains and we are grateful to Irene Bänziger and Yvonne Häfele for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Vogelgsang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogelgsang, S., Widmer, F., Jenny, E. et al. Characterisation of novel Fusarium graminearum microsatellite markers in different Fusarium species from various countries. Eur J Plant Pathol 123, 477–482 (2009). https://doi.org/10.1007/s10658-008-9379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9379-x

Keywords

Navigation