Skip to main content
Log in

Suppression of Papaya ringspot virus infection in Carica papaya with CAP-34, a systemic antiviral resistance inducing protein from Clerodendrum aculeatum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

CAP-34, a protein from Clerodendrum aculeatum inducing systemic antiviral resistance was evaluated for control of Papaya ringspot virus (PRSV) infection in Carica papaya. In control plants (treated with CAP-34 extraction buffer) systemic mosaic became visible around 20 days that intensified up to 30 days in 56% plants. During this period, CAP-34-treated papaya did not show any symptoms. Between 30 and 60 days, 95% control plants exhibited symptoms ranging from mosaic to filiformy. In the treated set during the same period, symptoms appeared in only 10% plants, but were restricted to mild mosaic. Presence of PRSV was determined in induced-resistant papaya at the respective observation times by bioassay, plate ELISA, immunoblot and RT-PCR. Back-inoculation with sap from inoculated resistant plants onto Chenopodium quinoa did not show presence of virus. The difference between control and treated sets was also evident in plate-ELISA and immunoblot using antiserum raised against PRSV. PRSV RNA was not detectable in treated plants that did not show symptoms by RT-PCR. Control plants at the same time showed a high intensity band similar to the positive control. We therefore suggest that the absence/delayed appearance of symptoms in treated plants could be due to suppressed virus replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Chen, G., Ye, C. M., Huang, J. C., Yu, M., & Li, B. J. (2001). Cloning of the Papaya ringspot virus (PRSV) replicase gene and generation of PRSV-resistant papayas through the introduction of the PRSV replicase gene. Plant Cell Reports, 20, 272–277. doi:10.1007/s002990000283.

    Article  CAS  Google Scholar 

  • Chiang, C. H., Lee, C. Y., Wang, C. H., Jan, F. J., Lin, S. S., Chen, T. C., et al. (2007). Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. European Journal of Plant Pathology, 118, 333–348. doi:10.1007/s10658-007-9130-z.

    Article  CAS  Google Scholar 

  • Clark, M. F., & Adam, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant virus. The Journal of General Virology, 34, 475–483. doi:10.1099/0022-1317-34-3-475.

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves, D. (1998). Control of Papaya ringspot virus in papaya: A case study. Annual Review of Phytopathology, 36, 415–437. doi:10.1146/annurev.phyto.36.1.415.

    Article  PubMed  CAS  Google Scholar 

  • Jain, R. K., Sharma, J., Shivakumar, A. S., Sharma, P. K., Byadgi, A. S., Verma, A. K., et al. (2004). Variability in the coat protein gene of Papaya ringspot virus isolated from multiple locations in India. Archives of Virology, 149, 2435–2442. doi:10.1007/s00705-004-0392-x.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, D. D. (1949). Papaya virus diseases with special references to papaya ringspot. Phytopathology, 39, 191–211.

    Google Scholar 

  • Krubphachaya, P., Juricek, M., & Kertbundit, S. (2007). Induction of RNA-mediated resistance to Papaya ringspot virus type W. Journal of Biochemistry and Molecular Biology, 40, 404–411.

    PubMed  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  PubMed  CAS  Google Scholar 

  • Picard, D., Kao, C. C., & Hudak, K. A. (2005). Pokeweed antiviral protein inhibits Brome mosaic virus replication in plant cells. The Journal of Biological Chemistry, 280, 20069–20075. doi:10.1074/jbc.M413452200.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, V., Srivastava, S., Varsha, , & Verma, H. N. (1995). Two basic proteins isolated from Clerodendrum inerme Gaertn. are inducers of systemic antiviral resistance in susceptible plants. Plant Science, 110, 73–82. doi:10.1016/0168-9452(95)04192-W.

    Article  CAS  Google Scholar 

  • Prasad, V., & Srivastava, S. (2001). Inducible mechanisms of plant resistance to virus infection. Journal of Plant Biology, 28, 1–11.

    Google Scholar 

  • Ritzenthaler, C. (2005). Resistance to plant viruses: old issues, new answers. Current Opinion in Biotechnology, 16, 118–122. doi:10.1016/j.copbio.2005.02.009.

    Article  PubMed  CAS  Google Scholar 

  • Tennant, P., Ahmad, M. H., & Gonsalves, D. (2005). Field resistance of coat protein transgenic papaya to Papaya ringspot virus in Jamaica. Plant Disease, 89, 841–847. doi:10.1094/PD-89-0841.

    Article  CAS  Google Scholar 

  • Towbin, H., Stahelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76, 4350–4354. doi:10.1073/pnas.76.9.4350.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, S., Bau, H. J., Chen, L. F., & Yeh, S. D. (2004). The ability of Papaya ringspot virus strains overcoming the transgenic resistance of papaya conferred by the coat protein gene is not correlated with higher degrees of sequence divergence from the transgene. European Journal of Plant Pathology, 110, 871–882. doi:10.1007/s10658-004-0607-8.

    Article  CAS  Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizophere bacteria. Annual Review of Phytopathology, 36, 453–483. doi:10.1146/annurev.phyto.36.1.453.

    Article  PubMed  Google Scholar 

  • Verma, H. N., & Awasthi, L. P. (1979). Antiviral activity of Boerhaavia diffusa root extract and the physical properties of the virus inhibitor. Canadian Journal of Botany, 57, 926–932. doi:10.1139/b79-113.

    Article  CAS  Google Scholar 

  • Verma, H. N., & Prasad, V. (1986). Virus diseases in Papaw (papaya). In S. P. Raychaudhuri, & J. P. Verma (Eds.), Review of tropical plant pathology (vol. II, (pp. 311–327)). New Delhi, India: Today and Tomorrows.

    Google Scholar 

  • Verma, H. N., Srivastava, S., Varsha, , & Kumar, D. (1996). Induction of systemic resistance in plants against viruses by a basic protein from Clerodendrum aculeatum leaves. Phytopathology, 86, 485–492. doi:10.1094/Phyto-86-485.

    Article  CAS  Google Scholar 

  • Yang, X., Liangyi, K., & Tien, P. (1996). Resistance of tomato infected with Cucumber mosaic virus satellite RNA to Potato spindle tuber viroid. The Annals of Applied Biology, 129, 543–551. doi:10.1111/j.1744-7348.1996.tb05775.x.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr R K Jain, Indian Agricultural Research Institute for the gift of the PRSV antiserum. Financial assistance from the Department of Science and Technology, New Delhi, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A., Trivedi, S., Krishna, S.K. et al. Suppression of Papaya ringspot virus infection in Carica papaya with CAP-34, a systemic antiviral resistance inducing protein from Clerodendrum aculeatum . Eur J Plant Pathol 123, 241–246 (2009). https://doi.org/10.1007/s10658-008-9358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9358-2

Keywords

Navigation