Advertisement

European Journal of Plant Pathology

, Volume 122, Issue 4, pp 539–547 | Cite as

Inter-laboratory evaluation of a duplex RT-PCR method using crude extracts for the simultaneous detection of Prune dwarf virus and Prunus necrotic ringspot virus

  • S. Massart
  • Y. Brostaux
  • L. Barbarossa
  • V. César
  • M. Cieslinska
  • O. Dutrecq
  • F. Fonseca
  • R. Guillem
  • A. Laviña
  • A. Olmos
  • S. Steyer
  • T. Wetzel
  • J. Kummert
  • M. H. Jijakli
Article

Abstract

The operational capacity of a duplex RT-PCR method for simultaneous detection of Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) has been established by nine European laboratories. A total of 576 samples from Prunus trees with known sanitary status, corresponding to 32 samples in two repetitions for each laboratory, were analysed. The level of sensitivity achieved by the method was 98.3% for PDV and 90.4% for PNRSV. The specificity was 87.4% for PDV and 94.3% for PNRSV. The unilateral 95% confidence intervals were calculated for all these values. Cohen’s Kappa coefficient of repeatability and reproducibility of the technique indicated a strong agreement between data. Likelihood ratios were 7.50 (positive) and 0.02 (negative) for PDV. For PNRSV, the positive likelihood ratio was 15.00 while the negative likelihood ratio was 0.11. In addition, post-test probabilities of infection were calculated to manage the risk associated with the routine use of this method. This allows an accurate test result interpretation to facilitate the integration of this new technique into a certification scheme.

Keywords

Diagnostic Inter-laboratory Plant virus Ring-test 

Notes

Acknowledgements

We thank Frédéric Vansteen and Sylvie Vanmellaert for the excellent sample management and technical assistance. This work has been funded by the General Management of Agriculture (DGA) of the Walloon Region Ministry (Belgium).

References

  1. Agresti, A., & Coull, B. A. (1998). Approximate is better than “Exact” for interval estimation of binomial proportions. The American Statistician, 52(2), 119–126.CrossRefGoogle Scholar
  2. Akobeng, A. (2007). Understanding diagnostic tests 2, likelihood ratios, pre-and post-test probabilities and their use of clinical practice. Acta Paediatrica, 96, 644–647.PubMedCrossRefGoogle Scholar
  3. Albertini, A., Giunchedi, L., Dradi, D., & Benini, A. (1993). Effetto di infezioni virali su alcune variet!a di ciliegio. Rivista di Frutticultura, 2, 61–64.Google Scholar
  4. Altman, D., & Bland, J. M. (1994). Statistics note, diagnostic tests 1: sensitivity and specificity. BMJ, 308, 1552.PubMedGoogle Scholar
  5. Banoo, S., Bell, D., Bossuyt, P., Herring, A., Mabey, D., Poole, F., et al. (2006). Evaluation of diagnostic tests for infectious diseases, general principles. Nature Reviews Microbiology, 5(11), S17–S29.Google Scholar
  6. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.CrossRefGoogle Scholar
  7. Crosslin, J. M., Hammond, R. W., & Hammerschlag, F. A. (1992). Detection of Prunus necrotic ringspot virus serotypes in herbaceous and Prunus hosts with a complementary RNA probe. Plant Disease, 76, 1132–1136.Google Scholar
  8. Desvignes, J. (Ed.) (1999). Virus infections of fruit trees. Paris: Editions CTIFL.Google Scholar
  9. Dominguez, S., Aparicio, F., Sanchez-Navarro, J., Cano, A., Pallas, V., & Garcia-Bruntun, J. (1998). Studies on the incidence of Ilarviruses and Apple chlorotic leaf spot virus (ACLSV) in apricot trees in the Murcia region (Spain) using serological and molecular hybridization methods. Acta Horticulturae, 472, 203–210.Google Scholar
  10. Fagan, T. (1975). Nomogram for Bayes theorem. New England Journal of Medicine, 293, 257.PubMedGoogle Scholar
  11. Ferris, N., King, D., Reid, S., Hutchings, G., Shaw, A., Paton, D., et al. (2006). Foot-and-mouth disease virus: A first inter-laboratory comparison trial to evaluate virus isolation and RT-PCR detection methods. Veterinary Microbiology, 117, 130–140.PubMedCrossRefGoogle Scholar
  12. Hammond, R. W., Howell, W. E., Mink, G. I., & Crosslin, J. M. (1998). Strain-specific polymerase chain reaction assays for discrimination of Prunus necrotic ringspot virus isolates. Acta Horticulturae, 472, 235–242.Google Scholar
  13. Henson, J. M., & French, R. (1993). The polymerase chain reaction and plant disease diagnosis. Annual Review in Phytopathoogy, 31, 81–109.CrossRefGoogle Scholar
  14. Herrera, M., & Madariaga, V. (2002). Incidencia de Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), Tomato ringspot virus (ToRSV)-Y plum pox virus (PPV) en viveros de frutales de carozo de la zona central de Chile. Agricultura Tecnica, 62, 38–45.Google Scholar
  15. James, D., Varga, A., Pallas, V., & Candresse, T. (2006). Strategies for simultaneous detection of multiple plant viruses. Canadian Journal of Plant Pathology, 28, 16–29.Google Scholar
  16. Jarrar, S., Myrta, A., di Terlizzi, B., & Savino, V. (2001). Viruses of stone fruits in Palestine. Acta Horticulturae, 550, 245–248.Google Scholar
  17. Jeffries, C., & James, C. (2005). Development of an EU protocol for the detection and diagnosis of Potato spindle tuber pospiviroid. Bulletin OEPP/EPPO, 35, 125–132.Google Scholar
  18. Josefsen, M., Cook, N., D’Agostino, M., Hansen, F., Wagner, M., Demnerova, K., et al. (2004). Validation of a PCR-based method for detectionc of food-borne thermotolerant campylobacters in a multicenter collaborative trial. Applied and Environmental Microbiology, 70, 4379–4383.PubMedCrossRefGoogle Scholar
  19. Kummert, J., Vendrame, M., Steyer, S., & Lepoivre, P. (2000). Development of routine RT-PCR tests for certification of fruit tree multiplication material. Bulletin OEPP/EPPO, 30, 441–448.Google Scholar
  20. Landis, R., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.PubMedCrossRefGoogle Scholar
  21. Light, R. J. (1971). Measures of response agreement for qualitative data: Some generalizations and alternatives. Psychological Bulletin, 76, 365–377.CrossRefGoogle Scholar
  22. Lopez, M., Llop, P., Gorris, M., Penalver, J., Donat, V., Cambra, M., et al. (2006). European protocol for diagnosis of Erwinia amylovora. Acta Horticulturae, 704, 99–103.Google Scholar
  23. Malorny, B., Tassios, P., Radström, P., Cook, N., Wagner, M., & Hoorfar, J. (2003). Standardization of diagnostic PCR for the detection of foodborne pathogens. International Journal of Food Microbiology, 83, 39–48.PubMedCrossRefGoogle Scholar
  24. Myrta, A., di Terlizzi, B., Pallas, V., & Savino, V. (2002). Stato sanitario dell’albicocco nei paesi del bacino mediterraneo. Rivista di Frutticoltura e di ortofloricoltura, 64, 91–95.Google Scholar
  25. Paton, D., McGoldrick, A., Bensaude, E., Belak, S., Mittelholzer, C., Koenen, F., et al. (2000). Classical Swine fever virus, a second ring test to evaluate RT-PCR detection methods. Veterinary Microbiology, 77, 71–81.PubMedCrossRefGoogle Scholar
  26. Pine, T. S. (1964). Influence of Necrotic ringspot virus on growth and yield of peach trees. Phytopathology, 54, 504–505.Google Scholar
  27. Rosner, A., Maslenin, L., & Spiegel, S. (1997). The use of short and long PCR products for improved detection of Prunus necrotic ringspot virus in woody plants. Journal of Virological Methods, 67, 135–141.PubMedCrossRefGoogle Scholar
  28. Sanchez-Navarro, J. A., Aparicio, F., Herranz, M. C., Minafra, A., Myrta, A., & Pallas, V. (2005). Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR. European Journal of Plant Pathology, 111, 77–84.CrossRefGoogle Scholar
  29. Scott, S. W., Zimmerman, M. T., Yilmaz, S., Zehr, E. I., & Bachman, E. (2001). The interaction between Prunus necrotic ringspot virus and Prune dwarf virus in peach stunt disease. Acta Horticulturae, 550, 229–236.Google Scholar
  30. Spiegel, S., Scott, S. W., Bowman-Vance, V., Tam, Y., Galiakparov, N. N., & Rosner, A. (1996). Improved detection of Prunus necrotic ringspot virus by the polymerase chain reaction. European Journal of Plant Pathology, 102, 681–685.CrossRefGoogle Scholar
  31. Taha, M., Alonso, J., Cafferkey, M., Caugant, D., Clarke, S., Diggle, M., et al. (2005). Interlaboratory conmparison of PCR-based identification and genogrouping of neisseria meningitidis. Journal of Clinical Microbiology, 43, 144–149.PubMedCrossRefGoogle Scholar
  32. Truyen, U., Wilhem, S., Genzow, M., & Schagemann, G. (2006). Porcine reproductive and Respiratory syndrome virus (PRRSV), a ring test performed in germany to assess RT-PCR detection methods. Journal of Veterinary Medicine, 53, 68–74.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • S. Massart
    • 1
  • Y. Brostaux
    • 2
  • L. Barbarossa
    • 3
  • V. César
    • 4
  • M. Cieslinska
    • 5
  • O. Dutrecq
    • 6
  • F. Fonseca
    • 7
  • R. Guillem
    • 8
  • A. Laviña
    • 9
  • A. Olmos
    • 10
  • S. Steyer
    • 11
  • T. Wetzel
    • 12
  • J. Kummert
    • 1
  • M. H. Jijakli
    • 1
  1. 1.Plant Pathology UnitGembloux Agricultural University (FUSAGx)GemblouxBelgium
  2. 2.Unité de Statistique, Informatique et Mathématique appliquées (SIMa)FUSAGxGemblouxBelgium
  3. 3.CNR-Istituto di Virologia Vegetale-Sezione di BariBariItaly
  4. 4.Corder ASBLUnité de PhytopathologieLouvain-La-NeuveBelgium
  5. 5.Virology LaboratoryResearch Institute of Pomology and FloricultureSkierniewicePoland
  6. 6.DNAlis sprlGemblouxBelgium
  7. 7.Molecular Plant Virology LabUniversity of Algarve, CDCTPVGambelasPortugal
  8. 8.Service Régional de la protection des végétaux de la DRAF AquitaineBordeauxFrance
  9. 9.Deparmento de Protecció VegetalInstitut de Recerca i Tecnologia AgroalimentariesCabrilsSpain
  10. 10.Instituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
  11. 11.Département Lutte biologique et Ressources phytogénétiquesCentre Wallon de Recherches AgronomiquesGemblouxBelgium
  12. 12.Institute for Plant ResearchRLP Agroscience, AlPlantaNeustadt an der WeinstrasseGermany

Personalised recommendations