European Journal of Plant Pathology

, Volume 122, Issue 3, pp 359–367 | Cite as

Susceptibility of wild carrot (Daucus carota ssp. carota) to Sclerotinia sclerotiorum

  • B. D. Jensen
  • M. R. Finckh
  • L. Munk
  • T. P. Hauser


Sclerotinia soft rot, caused by Sclerotinia sclerotiorum, is a severe disease of cultivated carrots (Daucus carota ssp. sativus) in storage. It is not known whether Sclerotinia soft rot also affects wild carrots (D. carota ssp. carota), which hybridise and exchange genes, among them resistance genes, with the cultivated carrot. We investigated the susceptibility of wild carrots to S. sclerotiorum isolates from cultivated carrot under controlled and outdoor conditions. Inoculated roots from both wild and cultivated plants produced sclerotia and soft rot in a growth chamber test. Two isolates differed significantly in the ability to produce lesions and sclerotia on roots of both wild carrots and cv. Bolero. Flowering stems of wild carrots produced dry, pale lesions after inoculation with the pathogen, and above-ground plant weight was significantly reduced 4 weeks after inoculation in a greenhouse test. Wild and cultivar rosette plants died earlier and fewer plants survived when inoculated with the pathogen under outdoor test conditions. Cultivar plants died earlier than wild plants, but survived as frequently. Plants inoculated in the crown died earlier and at a lower frequency than plants inoculated on leaves. Wild carrots may thus serve as a host of S. sclerotiorum and thus eventually benefit from any uptake of resistance genes, among them transgenes, via introgression from cultivated carrots.


Pathogenicity Risk assessment Genetically modified crops Wild plant–pathogen interactions 



We thank Tage K. Jensen, Fårevejle for providing cultivated carrot roots and Beate Strandberg, National Environmental Research Institute, for providing wild carrots from Silkeborg. We are grateful to David B. Collinge for constructive comments. This study was financed by the Centre for Effects and Risks of Biotechnology in Agriculture, The Danish Environmental Research Programme (SMPII).


  1. Andow, D. A., & Zwahlen, C. (2006). Assessing environmental risks of transgenic plants. Ecology Letters, 9, 196–214.PubMedCrossRefGoogle Scholar
  2. Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93–108.Google Scholar
  3. Bourdôt, G. W., Harvey, I. C., Hurrell, G. A., & Saville, D. J. (1995). Demographic and biomass production consequences of inundative treatment of Circium arvense with Sclerotinia sclerotiorum. Biocontrol Science and Technology, 5, 11–25.CrossRefGoogle Scholar
  4. Brandenburg, W. A. (1981). Possible relationships between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Kulturpflanze, 29, 369–375.CrossRefGoogle Scholar
  5. Burdon, J. J., Thrall, P. H., & Ericson, L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 4, 19–39.CrossRefGoogle Scholar
  6. Chen, W. P., & Punja, Z. K. (2002). Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Reporter, 20, 929–935.CrossRefGoogle Scholar
  7. Conner, A. J., Glare, T. R., & Nap, J. P. (2003). The release of genetically modified crops into the environment – Part II. Overview of ecological risk assessment. The Plant Journal, 33, 19–46.PubMedCrossRefGoogle Scholar
  8. Cornwallis, L. J., Stewart, A., Bourdôt, G. W., Gaunt, R. E., Harvey, I. C., & Saville, D. J. (1999). Pathogenicity of Sclerotinia sclerotiorum on Ranunculus acris in dairy pasture. Biocontrol Science and Technology, 9, 365–377.CrossRefGoogle Scholar
  9. Cother, E. J. (2000). Pathogenicity of Sclerotinia sclerotiorum to Chrysanthemoides monilifera ssp. rotundata (Bitoubush) and selected species of the coastal flora in Eastern Australia. Biological Control, 18, 10–17.CrossRefGoogle Scholar
  10. Damgaard, C., & Jensen, B. D. (2002). Disease resistance in Arabidopsis thaliana increases the competitive ability and the predicted probability of long-term ecological success under disease pressure. Oikos, 98, 459–466.CrossRefGoogle Scholar
  11. D’Antuono, L. F. (1985). Studio sull’inquinamento genetico causato da polline de tipi spontanei in carota da seme. Rivista di Agronomia, 19, 297–304.Google Scholar
  12. Erneberg, M., Strandberg, B., & Jensen, B. D. (2003). Susceptibility of a plant invader to a pathogenic fungus: An experimental study of Heracleum mantegazzianum (giant hogweed) and Sclerotinia sclerotiorum. In L. E. Child, J. H. Brock, G. Brundu, K. Prach, P. Pyšek, P. M. Wade, & M. Williamson (Eds.) Plant invasions: Ecological threats and management solutions (pp. 355–372). Leiden, The Netherlands: Backhuys Publishers.Google Scholar
  13. Finlayson, J. E., Rimmer, S. R., & Pritchard, M. K. (1989). Infection of carrots by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 11, 242–246.Google Scholar
  14. Hansen, K. (1981). Dansk feltflora. Copenhagen: Gyldendalske Boghandel, Nordisk Forlag A/S.Google Scholar
  15. Hauser, T. P., & Bjørn, G. K. (2001). Hybrids between wild and cultivated carrots in Danish carrot fields. Genetic Resources and Crop Evolution, 48, 499–506.CrossRefGoogle Scholar
  16. Hauser, T. P., & Shim, S. I. (2007). Survival and flowering of hybrids between cultivated and wild carrots (Daucus carota) in Danish grasslands. Environmental Biosafety Research, 6, 237–247.PubMedCrossRefGoogle Scholar
  17. Holm, L., Doll, J., Holm, E., Pancho, J. V., & Herberger, J. P. (1997). World weeds: Natural histories and distribution. New York: Wiley.Google Scholar
  18. Jacobs, J. S., Sheley, R. L., & Maxwell, B. D. (1996). Effect of Sclerotinia sclerotiorum on the interference between bluebunch wheatgrass (Agropyrum spicatum) and spotted knapweed (Centaurea maculosa). Weed Technology, 10, 13–21.Google Scholar
  19. Kora, C., McDonald, M. R., & Boland, G. J. (2003). Sclerotinia rot of carrot. An example of phenological adaptation and bicyclic development by Sclerotinia sclerotiorum. Plant Disease, 87, 456–470.CrossRefGoogle Scholar
  20. Kohli, Y., & Kohn, L. M. (1996). Mitochondrial haplotypes in populations of the plant-infecting fungus Sclerotinia sclerotiorum: wide distribution in agriculture, local distribution in the wild. Molecular Ecology, 5, 773–783.CrossRefGoogle Scholar
  21. Kohn, L. M. (1995). The clonal dynamic in wild and agricultural plant–pathogen populations. Canadian Journal of Botany, 73(Suppl. 1), S1231–S1240.CrossRefGoogle Scholar
  22. Kull, L. S., Pedersen, W. L., Palmquist, D., & Hartman, G. L. (2004). Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum. Plant Disease, 88, 325–332.CrossRefGoogle Scholar
  23. Lewis, B. G., & Garrod, B. (1983). Carrots. In C. Dennis (Ed.) Post-harvest pathology of fruits and vegetables (pp. 103–124). London: Academic Press.Google Scholar
  24. Magnussen, L. S., & Hauser, T. P. (2007). Hybrids between wild and cultivated carrots in natural populations in Denmark. Heredity, 99, 185–192.PubMedCrossRefGoogle Scholar
  25. McDowell, J. M., & Simon, S. A. (2006). Recent insights into R gene evolution. Molecular Plant Pathology, 7, 437–448.CrossRefGoogle Scholar
  26. Mitich, L. W. (1996). Wild carrot (Daucus carota L.). Weed Technology, 10, 455–457.Google Scholar
  27. Pascher, K., & Gollmann, G. (1999). Ecological risk assessment of transgenic plant releases: an Austrian perspective. Biodiversity and Conservation, 8, 1139–1158.CrossRefGoogle Scholar
  28. Pratt, R. G., & Rowe, D. E. (1995). Comparative pathogenicity of isolates of Sclerotinia trifoliorum and S. Sclerotiorum on alfalfa cultivars. Plant Disease, 79, 474–477.Google Scholar
  29. Price, K., & Colhoun, J. (1975). Pathogenicity of isolates of Sclerotinia sclerotiorum (Lib.) De Bary to several hosts. Journal of Phytopathology, 83, 232–238.CrossRefGoogle Scholar
  30. Stachler, J. M., & Kells, J. J. (1997). Wild carrot (Daucus carota) control in no-tillage cropping systems. Weed Technology, 11, 444–452.Google Scholar
  31. Takaichi, M., & Oeda, K. (2000). Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Science, 153, 135–144.PubMedCrossRefGoogle Scholar
  32. Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M., & Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423, 74–77.PubMedCrossRefGoogle Scholar
  33. Wang, B., Brubaker, C. L., & Burdon, J. J. (2004). Fusarium species and Fusarium wilt pathogens associated with native Gossypium populations in Australia. Mycological Research, 108, 35–44.PubMedCrossRefGoogle Scholar
  34. Warren, J., & James, P. (2006). The ecological effects of exotic disease resistance genes introgressed into British gooseberries. Oecologia, 147, 69–75.PubMedCrossRefGoogle Scholar
  35. Wijnheijmer, E. H. M., Brandenburg, W. A., & Ter Borg, S. J. (1989). Interactions between wild and cultivated carrot (Daucus carota L.) in the Netherlands. Euphytica, 40, 147–154.Google Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • B. D. Jensen
    • 1
    • 2
  • M. R. Finckh
    • 3
  • L. Munk
    • 1
  • T. P. Hauser
    • 4
  1. 1.Department of Plant Biology, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Department of Agricultural Sciences, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.Faculty of Organic Agricultural SciencesUniversity of KasselWitzenhausenGermany
  4. 4.Department of Ecology, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations