European Journal of Plant Pathology

, Volume 122, Issue 2, pp 307–314 | Cite as

Transcript profiling for Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression

  • Jin-Wen Zhu
  • You-Ping Xu
  • Zhi-Xin Zhang
  • Wen-Yuan Cao
  • Xin-Zhong Cai


Tomato Cf genes confer resistance to the leaf mold pathogen Cladosporium fulvum. The Avr4/Cf-4- and Avr9/Cf-9-dependent hypersensitive responses (HRs) are distinct in cell death pattern, intensity, and sensitivity to environmental conditions. To understand the mechanism resulting in these differences, comparative transcript profiling for Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression by cDNA-AFLP was performed previously. 367 ACE (Avr/Cf-elicited) transcript-derived fragments (TDFs) were identified, among which 189 were cloned and sequenced. In this study, we report another 89 ACE fragments. These ACE genes were associated with: defence, signal transduction, HR and cell death, transcriptional regulation, metabolism, protein synthesis, photosynthesis, membrane fusion, secretion and trafficking, miscellaneous biological processes, and genes with unknown function or with no significant similarity to known sequences. Among these sequences 43 (potentially encoding 36 types of proteins) were identified for the first time as genes differentially expressed during the development of Avr/Cf-dependent HR. Sequence and expression data from this study further support that transcription is reprogrammed to promote defence response and HR and repress photosynthesis in the Avr/Cf HR+ seedlings.


ACE Cladosporium fulvum Defence Signal transduction Tomato Transcriptome 



We are grateful to Dr. Matthieu Joosten (Wageningen University, The Netherlands) for providing sequences of the ART fragments. This work was financially supported by the National Basic Research Programme of China (grant No. 2006CB101903), the Fok Ying Tong Education Foundation (grant No. 101032), and the National Natural Science Foundation of China (grant nos. 30070492, 30671352).

Supplementary material

10658_2008_9294_MOESM1_ESM.doc (270 kb)
Supplementary Table 1 List of newly cloned tomato ACE fragments isolated using cDNA-AFLP (DOC 270 kb)
10658_2008_9294_MOESM2_ESM.doc (56 kb)
Supplementary Table 2 Functional overlaps between the ACRE, ART and ACE genes (DOC 55.5 kb)


  1. Albert, M., Belastegui-Macadam, X., & Kaldenhoff, R. (2006). An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato. Plant Journal, 48, 548–556.PubMedCrossRefGoogle Scholar
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.PubMedCrossRefGoogle Scholar
  3. Cai, X., Takken, F. L. W., Joosten, M. H. A. J., & De Wit, P. J. G. M. (2001). Specific recognition of AVR4 and AVR9 results in distinct patterns of hypersensitive cell death in tomato, but similar patterns of defence-related gene expression. Molecular Plant Pathology, 2, 77–86.CrossRefGoogle Scholar
  4. Chaves, I., Regalado, A. P., Chen, M., Ricardo, C. P., & Showalter, A. M. (2002). Programmed cell death induced by (b-D-galactosyl)3 Yariv reagent in Nicotiana tabacum BY-2 suspension-cultured cells. Physiologia Plantarum, 116, 548–553.CrossRefGoogle Scholar
  5. Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qui, J. L., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425, 973–007.PubMedCrossRefGoogle Scholar
  6. De Jong, C. F., Takken, F. L. W., Cai, X., De Wit, P. J. G. M., & Joosten, M. H. A. J. (2002). Attenuation of Cf-mediated defense responses at elevated temperatures correlates with a decrease in elicitor-binding sites. Molecular Plant-Microbe Interactions, 15, 1040–1049.PubMedCrossRefGoogle Scholar
  7. Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E., & Jones, J. D. G. (2000). cDNA-AFLP reveals a striking overlap in race specific resistance and wound response gene expression profiles. Plant Cell, 12, 963–977.PubMedCrossRefGoogle Scholar
  8. Gabriëls, S. H. E. J., Takken, F. L. W., Vossen, J. H., de Jong, C. F., Liu, Q., Turk, S. C. H. J., et al. (2006). cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Molecular Plant-Microbe Interactions, 19, 567–576.PubMedCrossRefGoogle Scholar
  9. Gish, W. (1996–2006).
  10. Gong, Z., Dong, C. -H., Lee, H., Zhu, J., Xiong, L., Gong, D., et al. (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell, 17, 256–267.PubMedCrossRefGoogle Scholar
  11. Heese, A., Ludwig, A. A., & Jones, J. D. G. (2005). Rapid phosphorylation of a syntaxin during the Avr9/Cf-9-race-specific signaling pathway. Plant Physiology, 138, 2406–2416.PubMedCrossRefGoogle Scholar
  12. Hong, W., Xu, Y. P., Zheng, Z., Cao, J. S., & Cai, X. Z. (2007). Comparative transcript profiling by cDNA-AFLP reveals similar patterns of Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression. Molecular Plant Pathology, 8, 515–527.CrossRefGoogle Scholar
  13. Jacobsen, S. E., Running, M. P., & Meyerowitz, E. M. (1999). Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development, 126, 5231–5243.PubMedGoogle Scholar
  14. Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P. J., & Jones, J. D. G. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 266, 789–793.PubMedCrossRefGoogle Scholar
  15. Joosten, M. H. A. J., Cozijnsen, T. J., & De Wit, P. J. G. M. (1994). Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature, 367, 384–386.PubMedCrossRefGoogle Scholar
  16. Joosten, M. H. A. J., & De Wit, P. J. G. M. (1999). The tomato-Cladosporium fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Annual Review of Phytopathology, 37, 335–367.PubMedCrossRefGoogle Scholar
  17. Kalde, M., Nuhse, T. S., Findlay, K., & Peck, S. C. (2007). The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proceedings of the National Academy of Science of the USA, 104, 11850–11855.CrossRefGoogle Scholar
  18. Karim, S., Holmström, K.–O., Mandal, A., Dahl, P., Hohmann, S., Brader, G., et al. (2007). AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta, 225, 1431–1445.PubMedCrossRefGoogle Scholar
  19. Langlois-Meurinne, M., Gachon, C. M. M., & Saindrenan, P. (2005). Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv. tomato in Arabidopsis. Plant Physiology, 139, 1890–1901.PubMedCrossRefGoogle Scholar
  20. Lorsch, J. R. (2002). RNA chaperones exist and DEAD box proteins get a life. Cell, 109, 797–800.PubMedCrossRefGoogle Scholar
  21. Nobuta, K., Okrent, R. A., Stoutemyer, M., Rodibaugh, N., Kempema, L., Wildermuth, M. C., et al. (2007). The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiology, 144, 1144–1156.PubMedCrossRefGoogle Scholar
  22. Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 12, 1484–1495.PubMedCrossRefGoogle Scholar
  23. Sanderfoot, A. A., Pilgrim, M., Adam, L., & Raikhel, N. V. (2001). Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell, 13, 659–666.PubMedCrossRefGoogle Scholar
  24. Stacey, G., Koh, S., Granger, C., & Becker, J. M. (2002). Peptide transport in plants. Trends in Plant Science, 7, 257–263.PubMedCrossRefGoogle Scholar
  25. Tang, D., Simonich, M. T., & Innes, R. W. (2007). Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiology, 144, 1093–1103.PubMedCrossRefGoogle Scholar
  26. Thomas, C. M., Jones, D. A., Parniske, M., Harrison, K., Balint-Kurti, P. J., Hatzixanthis, K., et al. (1997). Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell, 9, 2209–2224.PubMedCrossRefGoogle Scholar
  27. Thomas, C. M., Tang, S., Hammond-Kosack, K., & Jones, J. D. G. (2000). Comparison of the hypersensitive response induced by the Cf-4 and Cf-9 genes in Nicotiana spp. Molecular Plant-Microbe Interactions, 13, 465–469.PubMedCrossRefGoogle Scholar
  28. Van den Ackerveken, G. F. J. M., Van Kan, J. A. L., & De Wit, P. J. G. M. (1992). Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant Journal, 2, 359–366.PubMedCrossRefGoogle Scholar
  29. Van der Hoorn, R. A., Laurent, F., Roth, R., & De Wit, P. J. G. M. (2000). Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Molecular Plant-Microbe Interactions, 13, 439–446.PubMedCrossRefGoogle Scholar
  30. Wang, C., Cai, X., & Xu, Y. (2006). Molecular mechanism of interaction between tomato and leaf mold pathogen Cladosporium fulvum. Acta Phytopathologica Sinica, 36, 385–391.Google Scholar
  31. Wang, C., Cai, X., & Zheng, Z. (2005). High humidity represses Cf-4/Avr4- and Cf-9/Avr9-dependent hypersensitive cell death and defense gene expression. Planta, 222, 947–956.PubMedCrossRefGoogle Scholar
  32. Yang, H., Li, Y., & Hua, J. (2006). The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant Journal, 48, 238–248.PubMedCrossRefGoogle Scholar
  33. Yang, H., Yang, S., Li, Y., & Hua, J. (2007). The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiology, 145, 135–146.PubMedCrossRefGoogle Scholar
  34. Zhang, Z. G., Feechan, A., Pedersen, C., Newman, M. A., Qiu, J. L., Olesen, K. L., et al. (2007). A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant Journal, 49, 302–312.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • Jin-Wen Zhu
    • 1
  • You-Ping Xu
    • 2
  • Zhi-Xin Zhang
    • 1
  • Wen-Yuan Cao
    • 1
  • Xin-Zhong Cai
    • 1
  1. 1.College of Agriculture and BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Centre of Analysis and MeasurementZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations