Skip to main content

Advertisement

Log in

What are the prospects for genetically engineered, disease resistant plants?

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Insect and herbicide-resistant plants are the most widely grown transgenics in agricultural production. No strategy using genetically engineered plants for disease resistance has had a comparable impact. Why is this? What are the prospects for introducing transgenic disease resistant plants to agriculture? We review the biological background for strategies used to make disease resistant GM crops, illustrate examples of these different strategies and discuss future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Abbreviations: Bt Bacillus thuringiensis toxins; GM genetically modified.

References

  • Altpeter, F., Varshney, A., Abderhalden, O., Douchkov, D., Sautter, C., Kumlehn, J., et al. (2005). Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Molecular Biology, 57, 271–283.

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe, M. A., Steinau, M., Park, R. F., Rooke, L., Pacheco, M. G., Hulbert, S. H., et al. (2004). Aberrant mRNA processing of the maize Rp1-D rust resistance gene in wheat and barley. Molecular Plant-Microbe Interactions, 17, 853–864.

    Article  PubMed  CAS  Google Scholar 

  • Babu, R. M., Sajeena, A., Seetharaman, K., Reddy, M. S. (2003). Advances in genetically engineered (transgenic) plants in pest management – An over view. Crop Protection, 22, 1071–1086.

    Article  Google Scholar 

  • Belfanti, E., Silfverberg-Dilworth, E., Tartarini, S., Patocchi, A., Barbieri, M., Zhu, J., et al. (2004). The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proceedings of the National Academy of Sciences, 101, 886–890.

    Article  CAS  Google Scholar 

  • Bird, L. J., Akhurst, R. J. (2004). Relative fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on conventional and transgenic cotton. Journal of Economic Entomology, 95, 1699–1709.

    Article  Google Scholar 

  • Brodersen, P., Malinovsky, F. G., Hematy, K., Newman, M. A., Mundy, J. (2005). The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology, 138, 1037–1045.

    Article  PubMed  CAS  Google Scholar 

  • Broekaert, W. F., Terras, F. R. G., Cammue, B. P. A. (2000). Induced and preformed antimicrobial proteins. In A. J. Slusarenko, R. S. S. Fraser, L. C. van Loon (Eds.) Mechanisms of resistance to plant diseases (pp. 371–477). Dordrecht: Kluwer.

    Google Scholar 

  • Campbell, M. A., Fitzgerald, H. A., Ronald, P. C. (2002). Engineering pathogen resistance in crop plants. Transgenic Research, 11, 599–613.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Li, X., Dong, X. N. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the United States of America, 95, 6531–6536.

    Article  PubMed  CAS  Google Scholar 

  • Carriére, Y., Ellers-Kirk, C., Liu, Y-B., Sims, M. A., Patin, A. L., Dennehy, T. J., et al. (2001). Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 94, 1571–1576.

    PubMed  Google Scholar 

  • Cary, J. W., Rajasekaran, K., Jaynes, J. M., Cleveland, T. E. (2000). Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Science, 154, 171–181.

    Article  PubMed  CAS  Google Scholar 

  • Castro, M. S., Fontes, W. (2007). Plant defense and antimicrobial peptides. Protein and Peptide Letters, 12, 11–16.

    Article  Google Scholar 

  • Cerdeira, A. L., Duke, S. O. (2006). The current status and environmental impacts of glyphosate-resistant crops: A review. Journal of Environmental Quality, 35, 1633–1658.

    Article  PubMed  CAS  Google Scholar 

  • Chern, M. S., Fitzgerald, H. A., Canlas, P. E., Navarre, D. A., Ronald, P. C. (2005). Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Molecular Plant-Microbe Interactions, 18, 511–520.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P., Capell, T., Kohli, A., Gatehouse, J. A., Gatehouse, A. M. R. (2006). Recent developments and future prospects in insect pest control in transgenic crops. Trends in Plant Science, 11, 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M., Dong, X. (2000). Roles of salicylic acid, jamonic acid, and ethylene in cpr-induced resistance in Arabidopsis. The Plant Cell, 12, 2175–2190.

    Article  PubMed  CAS  Google Scholar 

  • Clausen, M., Krauter, R., Schachermayr, G., Potrykus, I., Sautter, C. (2000). Antifungal activity of a virally encoded gene in transgenic wheat. Nature Biotechnology, 18, 446–449.

    Article  PubMed  CAS  Google Scholar 

  • Clements, M. J., Campbell, K. W., Maragos, C. M., Pilcher, C., Headrick, J. M., Pataky, J. K., et al. (2003). Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and fusarium ear rot of corn. Crop Science, 43, 1283–1293.

    CAS  Google Scholar 

  • Cober, E. R., Rioux, S., Rajcan, I., Donaldson, P. A., Simmonds, D. H. (2003). Partial resistance to white mold in a transgenic soybean line. Crop Science, 43, 92–95.

    Google Scholar 

  • Collinge, D. B., Jensen, M. K., Lyngkjær, M. F., Rung, J. H. (2007). How can we exploit functional genomics to understand the nature of plant defences? Barley as a case study. European Journal of Plant Pathology (this issue).

  • Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., Vad, K. (1993). Plant chitinases. The Plant Journal, 3, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Conrath, U. (2007). Priming: It’s all the world to induced disease resistance. European Journal of Plant Pathology (this issue).

  • Cui, X., Harling, R. (2005). N-acyl-homoserine lactone-mediated quorum sensing blockage, a novel strategy for attenuating pathogenicity of Gram-negative bacterial plant pathogens. European Journal of Plant Pathology, 111, 327–339.

    Article  CAS  Google Scholar 

  • Datta, S. K. (2004). Rice biotechnology: A need for developing countries. AgBioForum, 7, 31–35.

    Google Scholar 

  • Donaldson, P. A., Anderson, T., Lane, B. G., Davidson, A. L., Simmonds, D. H. (2001). Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiological and Molecular Plant Pathology, 59, 1096–1178.

    Article  CAS  Google Scholar 

  • Dong, Y-H., Wang, L., Xu, J-L., Zhang, H-B., Zhang, X. F., Zhang, L. H. (2001). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411, 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Dong, Y. H., Xu, J. L., Li, X. Z., Zhang, L. H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences, 97, 3526–3531.

    Article  CAS  Google Scholar 

  • Durrant, W. E., Dong, X. N. (2005). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  CAS  Google Scholar 

  • Duvick, J. (2001). Prospects for reducing fumonisin contamination of maize through genetic modification. Environmental Health Perspectives, 109, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, N., Edwards, M., Gatehouse, J., Capell, T., Christou, P., Gatehouse, A. (2006). Transgenic plants for insect pest control: A forward looking scientific perspective. Transgenic Research, 15, 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, N., Edwards, M. G., Gatehouse, J. A., Gatehouse, A. M. R. (2004). Plant-insect interactions: Molecular approaches to insect resistance. Current Opinion in Biotechnology, 15, 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Field, B., Jordan, F., Osbourn, A. (2006). First encounters – Deployment of defence-related natural products by plants. New Phytologist, 172, 193–207.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, M., Ferreira, S., Gonsalves, D. (1997). Management of virus diseases by classical and engineered protection. Molecular Plant Pathology On-Line http://www.bspp.org.uk/mppol/] 1997/0116fuchs.

  • Fuchs, M., Gonsalves, D. (2007). Safety of virus-resistant transgenic plants two decades after their introduction: Lessons from realistic field risk assessment studies. Annual Review of Phytopathology, 45, 173–202.

    Article  PubMed  CAS  Google Scholar 

  • Fuentes, A., Ramos, P. L., Fiallo, E., Callard, D., Sanchez, Y., Peral, R., et al. (2006). Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Research, 15, 291–304.

    Article  CAS  Google Scholar 

  • Gahan, L. J., Gould, F., Heckel, D. G. (2001). Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 293, 857–860.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves, D. (1998). Control of papaya ringspot virus in papaya: A case study. Annual Review of Phytopathology, 36, 415–437.

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves, D. (2004). Transgenic papaya in Hawaii and beyond. AgBioForum, 7, 36–40.

    Google Scholar 

  • Hain, R., Reif, H. J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., et al. (1993). Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 361, 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt, R. (1999). Phytoalexins: What have we learned after 60 years? Annual Review of Phytopathology, 37, 285–306.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, B. G., Campbell, K. W., Pilcher, C. D., Degooyer, T. A., Robinson, A. E., McMillen, B. L., et al. (2004). Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002. Journal of Agricultural and Food Chemistry, 52, 1390–1397.

    Article  PubMed  CAS  Google Scholar 

  • Hovmøller, M. S. (2007). Source of seedling and adult plant resistance to Puccinia strüfomis f. sp. tritici in European wheats. Plant Breeding, 126, 225–233.

    Article  CAS  Google Scholar 

  • Hovmøller, M. S., Østergård, H., Munk, L. (1997). Modelling virulence dynamics of airborne plant pathogens in relation to selection by host resistance. In I. R. Crute, E. Holub, J. J. Burdon (Eds.) The gene-for-gene relationship in plant–parasite interactions. The gene for gene relationship in plant parasite interactions (pp. 173–190). Wallingford, UK: CABI International.

    Google Scholar 

  • Howles, P., Lawrence, G., Finnegan, J., McFadden, H., Ayliffe, M., Dodds, P., et al. (2005). Autoactive alleles of the Flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Molecular Plant-Microbe Interactions, 18, 570–582.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., et al. (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 133, 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Huang, F., Buschman, L. L., Higgins, R. A., McGaughey, W. H. (1999). Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science, 284, 965–967.

    Article  PubMed  CAS  Google Scholar 

  • Igawa, T., Takahashi-Ando, N., Ochiai, N., Ohsato, S., Shimizu, T., Kudo, T., et al. (2007). Reduced contamination by the Fusarium mycotoxin Zearalenone in maize kernels through genetic modification with a detoxification gene. Applied and Environmental Microbiology, 73, 1622–1629.

    Article  PubMed  CAS  Google Scholar 

  • James, C. (2006) Global status of commercialized biotech/GM crops: 2006. ISAAA Brief 35: http://www.isaaa.org/Resources/publications/briefs/35/highlights/default.html.

  • Joseph, M., Gopalakrishnan, S., Sharma, R. K., Singh, V. P., Singh, A. K., Singh, N. K., et al. (2004). Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Molecular Breeding, 13, 377–387.

    Article  CAS  Google Scholar 

  • Kalpana, K., Maruthasalam, S., Rajesh, T., Poovannan, K., Kumar, K. K., Kokiladevi, E., et al. (2006). Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Science, 170, 203–215.

    Article  CAS  Google Scholar 

  • Leckband, G., Lorz, H. (1998). Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theoretical and Applied Genetics, 96, 1004–1012.

    Article  CAS  Google Scholar 

  • Liang, H., Maynard, C. A., Allen, R. D., Powell, W. A. (2004). Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Molecular Biology, 45, 619–629.

    Article  Google Scholar 

  • Lorrain, S., Vailleau, F., Balagué, C., Roby, D. (2003). Lesion mimic mutants: Keys for deciphering cell death and defense pathways in plants? Trends in Plant Science, 8, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Mach, J. M., Castillo, A. R., Hoogstraten, R., Greenberg, J. T. (2001). The Arabidopsis-accelerated death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proceedings of the National Academy of Sciences of the United States of America, 98, 771–776.

    Article  PubMed  CAS  Google Scholar 

  • Makandar, R., Essig, J. S., Schapaugh, M. A., Trick, H. N., Shah, J. (2006). Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant-Microbe Interactions, 19, 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. M., Staples, R. C., Gil-ad, N. L. (2001). Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry, 58, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, B. A., Linde, C. (2003). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124, 163–180.

    Article  Google Scholar 

  • McHale, L., Tan, X. P., Koehl, P., Michelmore, R. W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biology 7: http://genomebiology.com/2006-7/4/212/abstract.

  • Mehlo, L., Gahakwa, D., Nghia, P. T., Loc, N. T., Capell, T., Gatehouse, J. A., et al. (2005). An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proceedings of the National Academy of Sciences of the United States of America, 102, 7812–7816.

    Article  PubMed  CAS  Google Scholar 

  • Mentag, R., Luckevich, M., Morency, M. J., Seguin, A. (2003). Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiology, 23, 405–411.

    PubMed  CAS  Google Scholar 

  • Montesinos, E. (2007). Antimicrobial peptides and plant disease control. FEMS Microbiology Letters, 270, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Mygind, P. H., Fischer, R. L., Schnorr, K. M., Hansen, M. T., Sonksen, C. P., Ludvigsen, S., et al. (2005). Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature, 437, 975–980.

    Article  PubMed  CAS  Google Scholar 

  • Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Hu, H. W., Yeh, S. D., et al. (2006). Expression of artificial microRNA in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24, 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd, G. E. D., Staskawicz, B. J. (1998). Genetically engineered broad-spectrum disease resistance in tomato. Proceedings of the National Academy of Sciences of the United States of America, 95, 10300–10305.

    Article  PubMed  CAS  Google Scholar 

  • Osbourn, A. (1996). Saponins and plant defence – A soap story. Trends in Plant Science, 1, 4–9.

    Article  Google Scholar 

  • Parlevliet, J. E. (2003). Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica, 124, 147–156.

    Article  Google Scholar 

  • Perez, C. J., Shelton, A. M. (1997). Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. Journal of Economic Entomology, 90, 87–93.

    CAS  Google Scholar 

  • Qu, J., Ye, J., Fang, R. (2007). Artificial miRNA-mediated virus resistance in plants. Journal of Virology doi: 10.1128/JVI.02457-06

  • Rajasekaran, K., Cary, J. W., Jaynes, J. M., Cleveland, T. E. (2007). Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnology Journal, 3, 545–554.

    Article  CAS  Google Scholar 

  • Rommens, C. M. (2004). All-native DNA transformation: A new approach to plant genetic engineering. Trends in Plant Science, 9, 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Rommens, C. M. T., Salmeron, J. M., Oldroyd, G. E. D., Staskawicz, B. J. (1995). Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. The Plant Cell, 7, 1537–1544.

    Article  PubMed  CAS  Google Scholar 

  • Saha, P., Dasgupta, I., Das, S. (2006). A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Molecular Biology, 62, 735–752.

    Article  PubMed  CAS  Google Scholar 

  • Schlaich, T., Urbaniak, B. M., Malgras, N., Ehler, E., Birrer, C., Meier, L., et al. (2006). Increased field resistance to Tilletia caries provided by a specific antifungal virus gene in genetically engineered wheat. Plant Biotechnology Journal, 4, 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Schlaich, T., Urbabiak, B., Plissonnier, M-L., Malgras, N., Sautter, C. (2007). Exploration and Swiss field testing of a viral gene for specific quantitative resistance against smuts and bunts in wheat. Advances in Biochemical Engineering and Biotechnology, 107, 97–112.

    CAS  Google Scholar 

  • Senior, I. J., Bavage, A. D. (2003). Comparison of genetically modified and conventionally derived herbicide tolerance in oilseed rape: A case study. Euphytica, 132, 217–226.

    Article  Google Scholar 

  • Senior, I. J., Dale, P. J. (2002). Herbicide-tolerant crops in agriculture: Oilseed rape as a case study. Plant Breeding, 121, 97–107.

    Article  Google Scholar 

  • Séralini, G. E., Cellier, D., de Vendomois, J. S. (2007). New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Archives of Environmental Contamination and Toxicology, 52, 596–602.

    Article  PubMed  CAS  Google Scholar 

  • Serebriakova, L., Oldach, K. H., Lorz, H. (2005). Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. Journal of Plant Physiology, 162, 985–1002.

    Google Scholar 

  • Shetty, N. P., Jørgensen, H. J. L., Sharathchandra, R. G., Collinge, D. B., Shetty, H. S. (2007). Roles of reactive oxygen species in interactions between plants and eucaryotic pathogens. European Journal of Plant Pathology (this issue).

  • Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., Waterhouse, P. M. (2000). Total silencing by intron-spliced hairpin RNAs. Nature, 407, 319–321.

    Article  PubMed  CAS  Google Scholar 

  • Sudarshana, M. R., Roy, G., Falk, B. W. (2007). Methods for engineering resistance to plant viruses. Methods Molecular Biology, 354, 183–195.

    CAS  Google Scholar 

  • Tai, T. H., Dahlbeck, D., Clark, E. T., Gajiwala, P., Pasion, R., Whalen, M. C., et al. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proceedings of the National Academy of Sciences, 96, 14153–14158.

    Article  CAS  Google Scholar 

  • Takken, F. L. W., Albrecht, M., Tameling, W. I. L. (2006). Resistance proteins: Molecular switches of plant defence. Current Opinion in Plant Biology, 9, 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X. Y., Xie, M. T., Kim, Y. J., Zhou, J. M., Klessig, D. F., Martin, G. B. (1999). Overexpression of Pto activates defense responses and confers broad resistance. The Plant Cell, 11, 15–29.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., Jones, J. D. G., Dangl, J. L. (2005). Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genetics, 37, 1130–1134.

    Article  PubMed  CAS  Google Scholar 

  • van der Vossen, E. A. G., Gros, J., Sikkema, A., Muskens, M., Wouters, D., Wolters, P., et al. (2005). The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. The Plant Journal, 44, 208–222.

    Article  PubMed  CAS  Google Scholar 

  • van der Vossen, E., Sikkema, A., Hekkert, B. T. L., Gros, J., Stevens, P., Muskens, M., et al. (2003). An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant Journal, 36, 867–882.

    Article  PubMed  CAS  Google Scholar 

  • van Loon, L. C., Rep, M., Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren, H., Stupak, M., Futterer, J., Gruissem, W., Zhang, P. (2007). Engineering resistance to geminiviruses – Review and perspectives. Plant Biotechnology Journal, 5, 207–220.

    Article  PubMed  CAS  Google Scholar 

  • VanEtten, H. D., Mansfield, J. W., Bailey, J. A., Farmer, E. E. (1994). Two classes of plant antibiotics – Phytoalexins versus phytoanticipins. The Plant Cell, 6, 1191–1192.

    Article  PubMed  CAS  Google Scholar 

  • Vazqez Rovere, C., Asurmendi, S., Hopp, H. E. (2007). Transgenic resistance in potato plants expressing potato leaf roll virus (PLRV) replicase gene sequences is RNA mediated and suggests the involvement of post-transcriptional gene silencing. Archives of Virology, 146, 1337–1353.

    Article  Google Scholar 

  • Wang, G-L., Song, W. Y., Ruan, D. L., Sideris, S., Ronald, P. C. (2007). The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Molecular Plant-Microbe Interactions, 9, 855.

    Google Scholar 

  • Yang, Y., Sherwood, T. A., Patte, C. P., Hiebert, E., Polston, J. E. (2004). Use of tomato yellow leaf curl virus (TYLCV) rep gene to engineer TYLCV resistance in tomato. Phytopathology, 94, 490–496.

    Article  CAS  PubMed  Google Scholar 

  • Yao, J. H., Pang, Y. Z., Qi, H. X., Wan, B. L., Zhao, X. Y., Kong, W. W., et al. (2003). Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids. Transgenic Research, 12, 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Zhai, W. X., Wang, W. M., Zhou, Y. L., Li, X. B., Zheng, X. W., Zhang, Q., et al. (2002). Breeding bacterial blight-resistant hybrid rice with the cloned bacterial blight resistance gene Xa21. Molecular Breeding, 8, 285–293.

    Article  Google Scholar 

  • Zhang, Z. G., Feechan, A., Pedersen, C., Newman, M. A., Qiu, J. L., Olesen, K. L., et al. (2007). A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. The Plant Journal, 49, 302–312.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Li, X., Jiang, G., Xu, Y., He, Y. (2006). Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breeding, 125, 600–605.

    Article  CAS  Google Scholar 

  • Zhao, B. Y., Lin, X. H., Poland, J., Trick, H., Leach, J., Hulbert, S. (2005). From the cover: A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences, 102, 15383–15388.

    Article  CAS  Google Scholar 

  • Zhu, Q., Maher, E. A., Masoud, S., Dixon, R. A., Lamb, C. J. (1994). Enhanced protection against fungal attack by constitutive coexpression of chitinase and glucanase genes in transgenic tobacco. Bio-Technology, 12, 807–812.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Collinge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collinge, D.B., Lund, O.S. & Thordal-Christensen, H. What are the prospects for genetically engineered, disease resistant plants?. Eur J Plant Pathol 121, 217–231 (2008). https://doi.org/10.1007/s10658-007-9229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9229-2

Keywords

Navigation