What are the prospects for genetically engineered, disease resistant plants?

  • David B. Collinge
  • Ole Søgaard Lund
  • Hans Thordal-Christensen
Full Research Paper


Insect and herbicide-resistant plants are the most widely grown transgenics in agricultural production. No strategy using genetically engineered plants for disease resistance has had a comparable impact. Why is this? What are the prospects for introducing transgenic disease resistant plants to agriculture? We review the biological background for strategies used to make disease resistant GM crops, illustrate examples of these different strategies and discuss future prospects.


Genetically engineering Disease resistant plants Plant virus Fungal disease Bacterial disease 


  1. Altpeter, F., Varshney, A., Abderhalden, O., Douchkov, D., Sautter, C., Kumlehn, J., et al. (2005). Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Molecular Biology, 57, 271–283.PubMedCrossRefGoogle Scholar
  2. Ayliffe, M. A., Steinau, M., Park, R. F., Rooke, L., Pacheco, M. G., Hulbert, S. H., et al. (2004). Aberrant mRNA processing of the maize Rp1-D rust resistance gene in wheat and barley. Molecular Plant-Microbe Interactions, 17, 853–864.PubMedCrossRefGoogle Scholar
  3. Babu, R. M., Sajeena, A., Seetharaman, K., Reddy, M. S. (2003). Advances in genetically engineered (transgenic) plants in pest management – An over view. Crop Protection, 22, 1071–1086.CrossRefGoogle Scholar
  4. Belfanti, E., Silfverberg-Dilworth, E., Tartarini, S., Patocchi, A., Barbieri, M., Zhu, J., et al. (2004). The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proceedings of the National Academy of Sciences, 101, 886–890.CrossRefGoogle Scholar
  5. Bird, L. J., Akhurst, R. J. (2004). Relative fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on conventional and transgenic cotton. Journal of Economic Entomology, 95, 1699–1709.CrossRefGoogle Scholar
  6. Brodersen, P., Malinovsky, F. G., Hematy, K., Newman, M. A., Mundy, J. (2005). The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology, 138, 1037–1045.PubMedCrossRefGoogle Scholar
  7. Broekaert, W. F., Terras, F. R. G., Cammue, B. P. A. (2000). Induced and preformed antimicrobial proteins. In A. J. Slusarenko, R. S. S. Fraser, L. C. van Loon (Eds.) Mechanisms of resistance to plant diseases (pp. 371–477). Dordrecht: Kluwer.Google Scholar
  8. Campbell, M. A., Fitzgerald, H. A., Ronald, P. C. (2002). Engineering pathogen resistance in crop plants. Transgenic Research, 11, 599–613.PubMedCrossRefGoogle Scholar
  9. Cao, H., Li, X., Dong, X. N. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the United States of America, 95, 6531–6536.PubMedCrossRefGoogle Scholar
  10. Carriére, Y., Ellers-Kirk, C., Liu, Y-B., Sims, M. A., Patin, A. L., Dennehy, T. J., et al. (2001). Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 94, 1571–1576.PubMedGoogle Scholar
  11. Cary, J. W., Rajasekaran, K., Jaynes, J. M., Cleveland, T. E. (2000). Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Science, 154, 171–181.PubMedCrossRefGoogle Scholar
  12. Castro, M. S., Fontes, W. (2007). Plant defense and antimicrobial peptides. Protein and Peptide Letters, 12, 11–16.CrossRefGoogle Scholar
  13. Cerdeira, A. L., Duke, S. O. (2006). The current status and environmental impacts of glyphosate-resistant crops: A review. Journal of Environmental Quality, 35, 1633–1658.PubMedCrossRefGoogle Scholar
  14. Chern, M. S., Fitzgerald, H. A., Canlas, P. E., Navarre, D. A., Ronald, P. C. (2005). Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Molecular Plant-Microbe Interactions, 18, 511–520.PubMedCrossRefGoogle Scholar
  15. Christou, P., Capell, T., Kohli, A., Gatehouse, J. A., Gatehouse, A. M. R. (2006). Recent developments and future prospects in insect pest control in transgenic crops. Trends in Plant Science, 11, 302–308.PubMedCrossRefGoogle Scholar
  16. Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M., Dong, X. (2000). Roles of salicylic acid, jamonic acid, and ethylene in cpr-induced resistance in Arabidopsis. The Plant Cell, 12, 2175–2190.PubMedCrossRefGoogle Scholar
  17. Clausen, M., Krauter, R., Schachermayr, G., Potrykus, I., Sautter, C. (2000). Antifungal activity of a virally encoded gene in transgenic wheat. Nature Biotechnology, 18, 446–449.PubMedCrossRefGoogle Scholar
  18. Clements, M. J., Campbell, K. W., Maragos, C. M., Pilcher, C., Headrick, J. M., Pataky, J. K., et al. (2003). Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and fusarium ear rot of corn. Crop Science, 43, 1283–1293.Google Scholar
  19. Cober, E. R., Rioux, S., Rajcan, I., Donaldson, P. A., Simmonds, D. H. (2003). Partial resistance to white mold in a transgenic soybean line. Crop Science, 43, 92–95.Google Scholar
  20. Collinge, D. B., Jensen, M. K., Lyngkjær, M. F., Rung, J. H. (2007). How can we exploit functional genomics to understand the nature of plant defences? Barley as a case study. European Journal of Plant Pathology (this issue).Google Scholar
  21. Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., Vad, K. (1993). Plant chitinases. The Plant Journal, 3, 31–40.PubMedCrossRefGoogle Scholar
  22. Conrath, U. (2007). Priming: It’s all the world to induced disease resistance. European Journal of Plant Pathology (this issue).Google Scholar
  23. Cui, X., Harling, R. (2005). N-acyl-homoserine lactone-mediated quorum sensing blockage, a novel strategy for attenuating pathogenicity of Gram-negative bacterial plant pathogens. European Journal of Plant Pathology, 111, 327–339.CrossRefGoogle Scholar
  24. Datta, S. K. (2004). Rice biotechnology: A need for developing countries. AgBioForum, 7, 31–35.Google Scholar
  25. Donaldson, P. A., Anderson, T., Lane, B. G., Davidson, A. L., Simmonds, D. H. (2001). Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiological and Molecular Plant Pathology, 59, 1096–1178.CrossRefGoogle Scholar
  26. Dong, Y-H., Wang, L., Xu, J-L., Zhang, H-B., Zhang, X. F., Zhang, L. H. (2001). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411, 813–817.PubMedCrossRefGoogle Scholar
  27. Dong, Y. H., Xu, J. L., Li, X. Z., Zhang, L. H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences, 97, 3526–3531.CrossRefGoogle Scholar
  28. Durrant, W. E., Dong, X. N. (2005). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.CrossRefGoogle Scholar
  29. Duvick, J. (2001). Prospects for reducing fumonisin contamination of maize through genetic modification. Environmental Health Perspectives, 109, 337–342.PubMedCrossRefGoogle Scholar
  30. Ferry, N., Edwards, M., Gatehouse, J., Capell, T., Christou, P., Gatehouse, A. (2006). Transgenic plants for insect pest control: A forward looking scientific perspective. Transgenic Research, 15, 13–19.PubMedCrossRefGoogle Scholar
  31. Ferry, N., Edwards, M. G., Gatehouse, J. A., Gatehouse, A. M. R. (2004). Plant-insect interactions: Molecular approaches to insect resistance. Current Opinion in Biotechnology, 15, 155–161.PubMedCrossRefGoogle Scholar
  32. Field, B., Jordan, F., Osbourn, A. (2006). First encounters – Deployment of defence-related natural products by plants. New Phytologist, 172, 193–207.PubMedCrossRefGoogle Scholar
  33. Fuchs, M., Ferreira, S., Gonsalves, D. (1997). Management of virus diseases by classical and engineered protection. Molecular Plant Pathology On-Line http://www.bspp.org.uk/mppol/] 1997/0116fuchs.
  34. Fuchs, M., Gonsalves, D. (2007). Safety of virus-resistant transgenic plants two decades after their introduction: Lessons from realistic field risk assessment studies. Annual Review of Phytopathology, 45, 173–202.PubMedCrossRefGoogle Scholar
  35. Fuentes, A., Ramos, P. L., Fiallo, E., Callard, D., Sanchez, Y., Peral, R., et al. (2006). Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Research, 15, 291–304.CrossRefGoogle Scholar
  36. Gahan, L. J., Gould, F., Heckel, D. G. (2001). Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 293, 857–860.PubMedCrossRefGoogle Scholar
  37. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.PubMedCrossRefGoogle Scholar
  38. Gonsalves, D. (1998). Control of papaya ringspot virus in papaya: A case study. Annual Review of Phytopathology, 36, 415–437.PubMedCrossRefGoogle Scholar
  39. Gonsalves, D. (2004). Transgenic papaya in Hawaii and beyond. AgBioForum, 7, 36–40.Google Scholar
  40. Hain, R., Reif, H. J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., et al. (1993). Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 361, 153–156.PubMedCrossRefGoogle Scholar
  41. Hammerschmidt, R. (1999). Phytoalexins: What have we learned after 60 years? Annual Review of Phytopathology, 37, 285–306.PubMedCrossRefGoogle Scholar
  42. Hammond, B. G., Campbell, K. W., Pilcher, C. D., Degooyer, T. A., Robinson, A. E., McMillen, B. L., et al. (2004). Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002. Journal of Agricultural and Food Chemistry, 52, 1390–1397.PubMedCrossRefGoogle Scholar
  43. Hovmøller, M. S. (2007). Source of seedling and adult plant resistance to Puccinia strüfomis f. sp. tritici in European wheats. Plant Breeding, 126, 225–233.CrossRefGoogle Scholar
  44. Hovmøller, M. S., Østergård, H., Munk, L. (1997). Modelling virulence dynamics of airborne plant pathogens in relation to selection by host resistance. In I. R. Crute, E. Holub, J. J. Burdon (Eds.) The gene-for-gene relationship in plant–parasite interactions. The gene for gene relationship in plant parasite interactions (pp. 173–190). Wallingford, UK: CABI International.Google Scholar
  45. Howles, P., Lawrence, G., Finnegan, J., McFadden, H., Ayliffe, M., Dodds, P., et al. (2005). Autoactive alleles of the Flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Molecular Plant-Microbe Interactions, 18, 570–582.PubMedCrossRefGoogle Scholar
  46. Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., et al. (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 133, 170–181.PubMedCrossRefGoogle Scholar
  47. Huang, F., Buschman, L. L., Higgins, R. A., McGaughey, W. H. (1999). Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science, 284, 965–967.PubMedCrossRefGoogle Scholar
  48. Igawa, T., Takahashi-Ando, N., Ochiai, N., Ohsato, S., Shimizu, T., Kudo, T., et al. (2007). Reduced contamination by the Fusarium mycotoxin Zearalenone in maize kernels through genetic modification with a detoxification gene. Applied and Environmental Microbiology, 73, 1622–1629.PubMedCrossRefGoogle Scholar
  49. James, C. (2006) Global status of commercialized biotech/GM crops: 2006. ISAAA Brief 35: http://www.isaaa.org/Resources/publications/briefs/35/highlights/default.html.
  50. Joseph, M., Gopalakrishnan, S., Sharma, R. K., Singh, V. P., Singh, A. K., Singh, N. K., et al. (2004). Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Molecular Breeding, 13, 377–387.CrossRefGoogle Scholar
  51. Kalpana, K., Maruthasalam, S., Rajesh, T., Poovannan, K., Kumar, K. K., Kokiladevi, E., et al. (2006). Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Science, 170, 203–215.CrossRefGoogle Scholar
  52. Leckband, G., Lorz, H. (1998). Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theoretical and Applied Genetics, 96, 1004–1012.CrossRefGoogle Scholar
  53. Liang, H., Maynard, C. A., Allen, R. D., Powell, W. A. (2004). Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Molecular Biology, 45, 619–629.CrossRefGoogle Scholar
  54. Lorrain, S., Vailleau, F., Balagué, C., Roby, D. (2003). Lesion mimic mutants: Keys for deciphering cell death and defense pathways in plants? Trends in Plant Science, 8, 263–271.PubMedCrossRefGoogle Scholar
  55. Mach, J. M., Castillo, A. R., Hoogstraten, R., Greenberg, J. T. (2001). The Arabidopsis-accelerated death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proceedings of the National Academy of Sciences of the United States of America, 98, 771–776.PubMedCrossRefGoogle Scholar
  56. Makandar, R., Essig, J. S., Schapaugh, M. A., Trick, H. N., Shah, J. (2006). Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant-Microbe Interactions, 19, 123–129.PubMedCrossRefGoogle Scholar
  57. Mayer, A. M., Staples, R. C., Gil-ad, N. L. (2001). Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry, 58, 33–41.PubMedCrossRefGoogle Scholar
  58. McDonald, B. A., Linde, C. (2003). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124, 163–180.CrossRefGoogle Scholar
  59. McHale, L., Tan, X. P., Koehl, P., Michelmore, R. W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biology 7: http://genomebiology.com/2006-7/4/212/abstract.
  60. Mehlo, L., Gahakwa, D., Nghia, P. T., Loc, N. T., Capell, T., Gatehouse, J. A., et al. (2005). An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proceedings of the National Academy of Sciences of the United States of America, 102, 7812–7816.PubMedCrossRefGoogle Scholar
  61. Mentag, R., Luckevich, M., Morency, M. J., Seguin, A. (2003). Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiology, 23, 405–411.PubMedGoogle Scholar
  62. Montesinos, E. (2007). Antimicrobial peptides and plant disease control. FEMS Microbiology Letters, 270, 1–11.PubMedCrossRefGoogle Scholar
  63. Mygind, P. H., Fischer, R. L., Schnorr, K. M., Hansen, M. T., Sonksen, C. P., Ludvigsen, S., et al. (2005). Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature, 437, 975–980.PubMedCrossRefGoogle Scholar
  64. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Hu, H. W., Yeh, S. D., et al. (2006). Expression of artificial microRNA in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24, 1420–1428.PubMedCrossRefGoogle Scholar
  65. Oldroyd, G. E. D., Staskawicz, B. J. (1998). Genetically engineered broad-spectrum disease resistance in tomato. Proceedings of the National Academy of Sciences of the United States of America, 95, 10300–10305.PubMedCrossRefGoogle Scholar
  66. Osbourn, A. (1996). Saponins and plant defence – A soap story. Trends in Plant Science, 1, 4–9.CrossRefGoogle Scholar
  67. Parlevliet, J. E. (2003). Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica, 124, 147–156.CrossRefGoogle Scholar
  68. Perez, C. J., Shelton, A. M. (1997). Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. Journal of Economic Entomology, 90, 87–93.Google Scholar
  69. Qu, J., Ye, J., Fang, R. (2007). Artificial miRNA-mediated virus resistance in plants. Journal of Virology doi:  10.1128/JVI.02457-06
  70. Rajasekaran, K., Cary, J. W., Jaynes, J. M., Cleveland, T. E. (2007). Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnology Journal, 3, 545–554.CrossRefGoogle Scholar
  71. Rommens, C. M. (2004). All-native DNA transformation: A new approach to plant genetic engineering. Trends in Plant Science, 9, 457–464.PubMedCrossRefGoogle Scholar
  72. Rommens, C. M. T., Salmeron, J. M., Oldroyd, G. E. D., Staskawicz, B. J. (1995). Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. The Plant Cell, 7, 1537–1544.PubMedCrossRefGoogle Scholar
  73. Saha, P., Dasgupta, I., Das, S. (2006). A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Molecular Biology, 62, 735–752.PubMedCrossRefGoogle Scholar
  74. Schlaich, T., Urbaniak, B. M., Malgras, N., Ehler, E., Birrer, C., Meier, L., et al. (2006). Increased field resistance to Tilletia caries provided by a specific antifungal virus gene in genetically engineered wheat. Plant Biotechnology Journal, 4, 63–75.PubMedCrossRefGoogle Scholar
  75. Schlaich, T., Urbabiak, B., Plissonnier, M-L., Malgras, N., Sautter, C. (2007). Exploration and Swiss field testing of a viral gene for specific quantitative resistance against smuts and bunts in wheat. Advances in Biochemical Engineering and Biotechnology, 107, 97–112.Google Scholar
  76. Senior, I. J., Bavage, A. D. (2003). Comparison of genetically modified and conventionally derived herbicide tolerance in oilseed rape: A case study. Euphytica, 132, 217–226.CrossRefGoogle Scholar
  77. Senior, I. J., Dale, P. J. (2002). Herbicide-tolerant crops in agriculture: Oilseed rape as a case study. Plant Breeding, 121, 97–107.CrossRefGoogle Scholar
  78. Séralini, G. E., Cellier, D., de Vendomois, J. S. (2007). New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Archives of Environmental Contamination and Toxicology, 52, 596–602.PubMedCrossRefGoogle Scholar
  79. Serebriakova, L., Oldach, K. H., Lorz, H. (2005). Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. Journal of Plant Physiology, 162, 985–1002.Google Scholar
  80. Shetty, N. P., Jørgensen, H. J. L., Sharathchandra, R. G., Collinge, D. B., Shetty, H. S. (2007). Roles of reactive oxygen species in interactions between plants and eucaryotic pathogens. European Journal of Plant Pathology (this issue).Google Scholar
  81. Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., Waterhouse, P. M. (2000). Total silencing by intron-spliced hairpin RNAs. Nature, 407, 319–321.PubMedCrossRefGoogle Scholar
  82. Sudarshana, M. R., Roy, G., Falk, B. W. (2007). Methods for engineering resistance to plant viruses. Methods Molecular Biology, 354, 183–195.Google Scholar
  83. Tai, T. H., Dahlbeck, D., Clark, E. T., Gajiwala, P., Pasion, R., Whalen, M. C., et al. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proceedings of the National Academy of Sciences, 96, 14153–14158.CrossRefGoogle Scholar
  84. Takken, F. L. W., Albrecht, M., Tameling, W. I. L. (2006). Resistance proteins: Molecular switches of plant defence. Current Opinion in Plant Biology, 9, 383–390.PubMedCrossRefGoogle Scholar
  85. Tang, X. Y., Xie, M. T., Kim, Y. J., Zhou, J. M., Klessig, D. F., Martin, G. B. (1999). Overexpression of Pto activates defense responses and confers broad resistance. The Plant Cell, 11, 15–29.PubMedCrossRefGoogle Scholar
  86. Torres, M. A., Jones, J. D. G., Dangl, J. L. (2005). Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genetics, 37, 1130–1134.PubMedCrossRefGoogle Scholar
  87. van der Vossen, E. A. G., Gros, J., Sikkema, A., Muskens, M., Wouters, D., Wolters, P., et al. (2005). The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. The Plant Journal, 44, 208–222.PubMedCrossRefGoogle Scholar
  88. van der Vossen, E., Sikkema, A., Hekkert, B. T. L., Gros, J., Stevens, P., Muskens, M., et al. (2003). An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant Journal, 36, 867–882.PubMedCrossRefGoogle Scholar
  89. van Loon, L. C., Rep, M., Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.PubMedCrossRefGoogle Scholar
  90. Vanderschuren, H., Stupak, M., Futterer, J., Gruissem, W., Zhang, P. (2007). Engineering resistance to geminiviruses – Review and perspectives. Plant Biotechnology Journal, 5, 207–220.PubMedCrossRefGoogle Scholar
  91. VanEtten, H. D., Mansfield, J. W., Bailey, J. A., Farmer, E. E. (1994). Two classes of plant antibiotics – Phytoalexins versus phytoanticipins. The Plant Cell, 6, 1191–1192.PubMedCrossRefGoogle Scholar
  92. Vazqez Rovere, C., Asurmendi, S., Hopp, H. E. (2007). Transgenic resistance in potato plants expressing potato leaf roll virus (PLRV) replicase gene sequences is RNA mediated and suggests the involvement of post-transcriptional gene silencing. Archives of Virology, 146, 1337–1353.CrossRefGoogle Scholar
  93. Wang, G-L., Song, W. Y., Ruan, D. L., Sideris, S., Ronald, P. C. (2007). The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Molecular Plant-Microbe Interactions, 9, 855.Google Scholar
  94. Yang, Y., Sherwood, T. A., Patte, C. P., Hiebert, E., Polston, J. E. (2004). Use of tomato yellow leaf curl virus (TYLCV) rep gene to engineer TYLCV resistance in tomato. Phytopathology, 94, 490–496.CrossRefPubMedGoogle Scholar
  95. Yao, J. H., Pang, Y. Z., Qi, H. X., Wan, B. L., Zhao, X. Y., Kong, W. W., et al. (2003). Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids. Transgenic Research, 12, 715–722.PubMedCrossRefGoogle Scholar
  96. Zhai, W. X., Wang, W. M., Zhou, Y. L., Li, X. B., Zheng, X. W., Zhang, Q., et al. (2002). Breeding bacterial blight-resistant hybrid rice with the cloned bacterial blight resistance gene Xa21. Molecular Breeding, 8, 285–293.CrossRefGoogle Scholar
  97. Zhang, Z. G., Feechan, A., Pedersen, C., Newman, M. A., Qiu, J. L., Olesen, K. L., et al. (2007). A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. The Plant Journal, 49, 302–312.PubMedCrossRefGoogle Scholar
  98. Zhang, J., Li, X., Jiang, G., Xu, Y., He, Y. (2006). Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breeding, 125, 600–605.CrossRefGoogle Scholar
  99. Zhao, B. Y., Lin, X. H., Poland, J., Trick, H., Leach, J., Hulbert, S. (2005). From the cover: A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences, 102, 15383–15388.CrossRefGoogle Scholar
  100. Zhu, Q., Maher, E. A., Masoud, S., Dixon, R. A., Lamb, C. J. (1994). Enhanced protection against fungal attack by constitutive coexpression of chitinase and glucanase genes in transgenic tobacco. Bio-Technology, 12, 807–812.Google Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • David B. Collinge
    • 1
  • Ole Søgaard Lund
    • 1
    • 3
  • Hans Thordal-Christensen
    • 2
  1. 1.Department of Plant Biology, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Department of Agricultural Sciences, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.Department of Genetics and Biotechnology, Faculty of Agricultural SciencesUniversity of AarhusFrederiksberg CDenmark

Personalised recommendations