European Journal of Plant Pathology

, Volume 120, Issue 4, pp 363–371 | Cite as

Fusaproliferin effects on the photosystem in the cells of maize seedling leaves

  • Antonello Santini
  • Antonia Šrobárová
  • Ján Pavlovkin
  • Milada Čiamporová
  • Alberto Ritieni
Full Research Paper


The possible role of the fusariotoxin, fusaproliferin in plant pathology was investigated with respect to cell membrane potential. Electron microscopy was used to study both the early effect of fusaproliferin on the host’s plasma membrane and ultrastructure responses in the cells of maize leaves. The seedlings of resistant (Lucia) and susceptible (Pavla) to the fusaproliferin maize cultivars were grown in the presence of fusaproliferin at different concentrations, namely 5 and 35 μg ml−1, respectively, and electrophysiological measurements were compared with those obtained using two different toxic compounds, namely fusicoccin and 3-3(3,4 dichlorophenyl)-1,1-dimethylurea (DCMU). It was observed that only the higher concentration of fusaproliferin induced the onset of visible symptoms on the leaves. Comparing the effect of fusaproliferin to that of fusicoccin and DCMU at the higher toxin concentration, it was observed that functional differences in membrane potential induced severe damage to the mesophyll and outer chloroplast membrane; the extent of changes in electrophysiology and ultrastructure disturbances depended on the toxin concentration and was greater in the susceptible cv. Pavla. Results indicated that fusaproliferin could be involved in Fusarium pathogenesis either as a virulence factor or by enhancing the activity of other toxins that might be concomitantly present in infected plants.


Fusaproliferin Electrophysiological measurement Leaves Mesophyll Bundle sheath Chloroplast 



This work was supported by Slovak Grant Agency VEGA, Project No.2/3051/25, 2/6056/26 and SAS/CNR cooperation.


  1. Abbas, H. K., Boyette, C. D., Hoagland, R. E., & Vesonder, R. E. (1991). Bioherbicidal potential of F. moniliforme and its phytotoxin, fumonisin. Weed Science, 39, 673–677.Google Scholar
  2. Adams, G. C., & Hart, L. P. (1989). The role of deoxynivalenol and 15-acetylated DON elucidated through protoplast fusions between toxigenic and nontoxigenic strains. Phytopathology, 79, 404–408.CrossRefGoogle Scholar
  3. Atanassov, Z., Nakamura, C., Mori, N., Kaneda, C., Kato, H., Jin, Y. Z., et al. (1994). Mycotoxin production and pathogenicity of Fusarium species and wheat resistance to Fusarium head blight. Canadian Journal of Botany, 72, 161–167.CrossRefGoogle Scholar
  4. Daly, J. M. (1981). Mechanism of action. In R. D. Durbin (Ed.), Toxins in plant disease (pp. 331–394). New York: Academic.Google Scholar
  5. Dekov, I., Tsonev, T., & Yordanov, I. (2000). Effects of water stress and height temperature stress on the structure and activity of photosynthetic apparatus of Zea mays and Helianthus annuus. Photosynthetica, 38, 361–366.CrossRefGoogle Scholar
  6. Desjardins, A. E., & Hohn, T. M. (1997). Mycotoxins in plant pathogenesis. Molecular Plant-Microbe Interactions, 10, 147–152.CrossRefGoogle Scholar
  7. Duke, S. O., & Lydon, J. (1993). Natural phytotoxins as herbicides. In ACS Symposium Series N. 524, Pest control with enhanced environmental safety (pp. 110–124). Washington: ACS.Google Scholar
  8. Farr, D. F., Bills, G. F., Chamuris, G. P., & Rossman, A. Y. (1989). Fungi on plants and leaves. Microbiology, 62, 3378–3384.Google Scholar
  9. Gang, G., Miedaner, T., Schuhmacher, U., Schollenberger, M., & Geiger, H. (1998). Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology, 88, 879–884.CrossRefGoogle Scholar
  10. Glauert, A. (1975). Fixation, dehydration and embedding of biological specimens (p. 207). Amsterdam: North Holland.Google Scholar
  11. Ilarsan, H., & Dolar, F. S. (2002). Histological and ultrastructural changes in leaves and stems of resistant and susceptible chickpea cultivars to Ascochyta rabiei. Journal of Phytopathology, 150, 340–348.CrossRefGoogle Scholar
  12. Kaup, M. T., Froese, C. D., & Thompson, J. E. (2002). A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiology, 129, 1616–1626.PubMedCrossRefGoogle Scholar
  13. Lamprecht, S. C., Marasas, W. F. O., Alberts, J. F., Cawood, M. E., Gelderblom, W. C. A., Shepard, G. S., et al. (1994). Phytotoxicity of fumonisins and AAL – Toxin to corn and tomato. Phytopathology, 84, 383–391.CrossRefGoogle Scholar
  14. Logrieco, A., Moretti, A., Fornelli, F., Fogliano, V., Ritieni, A., Caiaffa, M., et al. (1996). Fusaproliferin production by Fusarium subglutinans and its toxicity to Artemia salina, SF-9 insect cells, and IARC/LCL 171 human B-lymphocytes. Applied Environment Microbiology, 62, 3378–3784.Google Scholar
  15. Marre, E. (1980). Fusicoccin: Mechanism of action on electrogenic hydrogen ion extrusion. Developments in Plant Biology, 4, 227–243.Google Scholar
  16. Miedaner, T., Schilling, A. G., & Geiger, H. H. (2001). Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. Journal of Phytopathology, 149, 641–648.CrossRefGoogle Scholar
  17. Monti, S. M., Fogliano, V., Logrieco, A., Ferracane, R., & Ritieni, A. (2000). Simultaneous determination of beauvericin, enniatins, and fusaproliferin by high performance liquid chromatography. Journal of Agricultural and Food Chemistry, 48, 3317–3320.PubMedCrossRefGoogle Scholar
  18. Munkvold, G. P. (2003). Cultural and genetic approaches to managing mycotoxins in maize. Annual Review of Phytopathology, 41, 99–116.PubMedCrossRefGoogle Scholar
  19. Nadubinská, M., Ritieni, A., Moretti, A., & Šrobárová, A. (2003). Chlorophyll content in maize plants after treatment with fusariotoxins. Biologia Bratislava, 58, 115–119.Google Scholar
  20. Neuhold, G., Fidesser, M., & Krska, R. (1997). Head blight (Fusarium spp.) on wheat: investigation on the relationship between disease symptoms and mycotoxin content. Cereal Research Communications, 25, 459–465.Google Scholar
  21. Novacky, A., & Ullrich-Eberius, C. I. (1982). Relationship between membrane potential and ATP level in Xanthomonas campestris pv. malvacearum infected cotton cotyledons. Physiological Plant Pathology, 21, 237–249.CrossRefGoogle Scholar
  22. Pascale, M., Visconti, A., & Chelkowski, J. (2002). Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. European Journal of Plant Pathology, 108, 645–651.CrossRefGoogle Scholar
  23. Pavlovkin, J., Mistrík, I., & Prokop, M. (2004). Some aspects of the phytotoxic action of fusaric acid on primary Ricinus roots. Plant Soil Environment, 50, 397–401.Google Scholar
  24. Pinto, S. R. C., Azevedo, J. L., Pereira, J. O., Vieira, M. L. C., & Labate, C. A. (2000). Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytologist, 147, 609–615.CrossRefGoogle Scholar
  25. Placinta, C. M., D’Mello, J. P. F., & Macdonald, A. M. C. (1999). A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science and Technology, 78, 21–37.CrossRefGoogle Scholar
  26. Pocsfalvi, G., Ritieni, A., Randazzo, G., Dobo, A., & Malorni, A. (2000). Interaction of fusarium mycotoxins, fusaproliferin and fumonisin B1 with DNA studied by electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 48, 5795–5801.PubMedCrossRefGoogle Scholar
  27. Proctor, R. H., Desjardins, A. E., McCormick, S. P., Plattner, R. D., Alexander, N. J., & Brown, D. W. (2002). Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. European Journal of Plant Pathology, 108, 691–698.CrossRefGoogle Scholar
  28. Randazzo, G., Fogliano, V., Ritieni, A., Mannina, L., Rossi, E., Scarallo, A. et al. (1993). Proliferin, a new Sesterterpene from Fusarium proliferatum, Tetrahedron, 49, 10883–10896.CrossRefGoogle Scholar
  29. Ritieni, A., Fogliano, V., Randazzo, G., Scarallo, A., Logrieco, A., Moretti, A. et al. (1995). Isolation and characterization of fusaproliferin, a new toxic metabolite from Fusarium proliferatum. Natural Toxin, 3, 17–20.CrossRefGoogle Scholar
  30. Ritieni, A., Monti, S. M., Randazzo, G., Logrieco, A., Moretti, A., Peluso, G. et al. (1997). Teratogenic effects of fusaproliferin on chicken. Journal of Agricultural and Food Chemistry, 45, 3039–3043.CrossRefGoogle Scholar
  31. Santini, A., Ritieni, A., Fogliano, V., Randazzo, G., Mannina, L., Logrieco, A. et al. (1996). Structure and absolute stereochemistry of fusaproliferin, a toxic metabolite from Fusarium proliferatum. Journal of Natural Production, 59, 109–112.CrossRefGoogle Scholar
  32. Shi, J., Mueller, W. C., & Beckman, C. (1991). Ultrastructure and histochemistry of lipoidal droplets in vessel contact cells and adjacent parenchyma cells in cotton plants infected by Fusarium oxysporum f.sp. vasinfectum. Physiological and Molecular Plant Pathology, 39, 201–211.CrossRefGoogle Scholar
  33. Stoyanova, D., & Uzunova, A. (2001). Effects of salicylic acid on the structure of second leaves of Hordeum vulgare, L. Biology of Plants, 44, 219–224.CrossRefGoogle Scholar
  34. Šrobárová, A., Nadubinská, M., & Čiamporová, M. (2004). Relative efficacy of fusariotoxins on young maize plants. Cereal Research Communications, 2, 241–248.Google Scholar
  35. Vianello, M., & Macri, F. (1978). Inhibition of plant cell membrane transport phenomena induced by zearalenone. Planta, 143, 51–57.CrossRefGoogle Scholar
  36. Wang, Y. Z., & Miller, J. D. (1988). Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. Journal of Phytopathology, 122, 118–125.Google Scholar
  37. Zonno, M. C., & Vurro, M. (1999). Effect of fungal toxins on germination of Striga hermonthica seeds. Weed Research, 39, 15–30.CrossRefGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • Antonello Santini
    • 1
  • Antonia Šrobárová
    • 2
  • Ján Pavlovkin
    • 2
  • Milada Čiamporová
    • 2
  • Alberto Ritieni
    • 1
  1. 1.Dipartimento di Scienza degli AlimentiUniversità degli Studi di Napoli “Federico II”Portici, NapoliItaly
  2. 2.Institute of BotanySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations