European Journal of Plant Pathology

, Volume 119, Issue 1, pp 29–37 | Cite as

Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.)

  • M. Iruela
  • P. Castro
  • J. Rubio
  • J. I. Cubero
  • C. Jacinto
  • T. Millán
  • J. Gil
Full Research Paper


Ascochyta blight caused by Ascochyta rabiei and fusarium wilt caused by Fusarium oxysporum. f. sp. ciceris are the two most serious diseases of chickpea (Cicer arietinum). Quantitative trait loci (QTL) or genes for ascochyta blight resistance and a cluster of resistance genes for several fusarium wilt races (foc1, foc3, foc4 and foc5) located on LG2 of the chickpea map have been reported independently. In order to validate these results and study the linkage relationship between the loci that confer resistance to blight and wilt, an intraspecific chickpea recombinant inbred lines (RIL) population that segregates for resistance to both diseases was studied. A new LG2 was established using sequence tagged microsatellite sites (STMS) markers selected from other chickpea maps. Resistance to race 5 of F. oxysporum (foc5) was inherited as a single gene and mapped to LG2, flanked by the STMS markers TA110 (6.5 cM apart) and TA59 (8.9 cM apart). A QTL for resistance to ascochyta blight (QTLAR3) was also detected on LG2 using evaluation data obtained separately in two cropping seasons. This genomic region, where QTLAR3 is located, was highly saturated with STMS markers. STMS TA194 appeared tightly linked to QTLAR3 and was flanked by the STMS markers TR58 and TS82 (6.5 cM apart). The genetic distance between foc5 and QTLAR3 peak was around 24 cM including six markers within this interval. The markers linked to both loci could facilitate the pyramiding of resistance genes for both diseases through MAS.


Cicer arietinum Ascochyta rabiei Fusarium oxysporum Molecular markers Linkage analysis 



This work has been supported by the European Union project: GLIP, contract no. FOOD-CT-2004-50622, and the national project : INIA, contract no. RTA04-067. M. Iruela acknowledges grant support from IFAPA-CICE Junta de Andalucia (Spain).


  1. Bhatti, M. A. (1990). The effects of inoculum density and environmental factors on wilt and root rot of chickpea (Cicer arietinum L.). Ph.D. Dissertation, Department of Plant Pathology, Washington State University, Pullman, Washington, 132 pp.Google Scholar
  2. Chen, W., Coyne, C. J., Peever, T. L., & Muehlbauer, F. J. (2004). Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathology, 53, 759–769.CrossRefGoogle Scholar
  3. Cho, S., Chen, W., & Muehlbauer, F. J. (2004). Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theoretical and Applied Genetics, 109, 733–739.PubMedCrossRefGoogle Scholar
  4. Churchill, G. A., & Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics, 138, 963–971.PubMedGoogle Scholar
  5. Cobos, M. J., Fernández, M. J., Rubio, J., Kharrat, M., Moreno, M. T., Gil, J., & Millán, T. (2005). A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli ´  Desi crosses: location of genes for resistance to fusarium wilt race 0. Theoretical and Applied Genetics, 110, 1347–1353.PubMedCrossRefGoogle Scholar
  6. Cobos, M. J., Rubio, J., Strange, R. N., Moreno, M. T., Gil, J., & Millán, T. (2006). A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica, 149, 105–111.CrossRefGoogle Scholar
  7. Collard, B. C. Y., Ades, P. K., Pang, E. C. K., Brouwer, J. B., & Taylor, P. W. J. (2001). Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Australasian Plant Pathology, 30, 271–276.CrossRefGoogle Scholar
  8. Collard, B. C. Y., Pang, E. C. K., Ades, P. K., & Taylor, P. W. J. (2003). Preliminary investigation of QTL associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theoretical and Applied Genetics, 107, 719–729.PubMedCrossRefGoogle Scholar
  9. Dey, S. K., & Singh, G. (1993). Resistance to ascochyta blight in chickpea – Genetic basis. Euphytica, 68, 147–153.CrossRefGoogle Scholar
  10. Doligez, A., Adam-Blondon, A. F., Cipriani, G., Di Gaspero, G., Laucou Merdinoglu, V. D., Meredith, C. P., Riaz, S., Roux, C., & This, P. (2006). An integrated SSR map of grapevine based on five mapping populations. Theoretical and Applied Genetics, 113, 369–382.PubMedCrossRefGoogle Scholar
  11. FAOSTAT data (2005). subset=agriculture. Last updated February 2005.Google Scholar
  12. Flandez-Galvez, H., Ades, P. K., Ford, R., Pang, E. C. K., & Taylor, P. W. J. (2003). QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 107, 1257–1265.PubMedCrossRefGoogle Scholar
  13. Gil, J., Nadal, S., Luna, D., Moreno, M. T., & de Haro, A. (1996). Variability of some physico-chemical characters in Desi and Kabuli chickpea types. Journal of the Science of Food and Agriculture, 71, 179–184.CrossRefGoogle Scholar
  14. Iruela, M., Rubio, J., Barro, F., Cubero, J. I., Millán, T., & Gil, J. (2006). Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theoretical and Applied Genetics, 112, 278–287.PubMedCrossRefGoogle Scholar
  15. Jiménez-Díaz, R. M., Trapero-Casas, A., & Cabrera de la Colina, J. (1989). Races of Fusarium oxysporum f. sp. ciceris infecting chickpea in southern Spain. In E. C. Tjamos & C. H. Beckman (Eds.), Vascular Wilt Diseases of Plants. NATO ASI Series, Vol. H28 (pp. 515–520). Springer-Verlag: Berlin.Google Scholar
  16. Jiménez-Gasco, M. M., Navas-Cortés, J. A., & Jiménez-Díaz, R. M. (2004). The Fusarium oxysporum f. sp. ciceris/Cicer arietinum pathosystem: a case study of the evolution of plant-pathogenic fungi into races and pathotypes. International Microbiology, 7, 95–104.PubMedGoogle Scholar
  17. Landa, B. B., Navas-Cortés, J. A., & Jiménez-Díaz, R. M. (2004). Integrated management of Fusarium wilt of chickpea with sowing date, host resistance, and biological control. Phytopathology, 94, 946–960.CrossRefPubMedGoogle Scholar
  18. Mayer, M. S., Tullu, A., Simon, C. J., Kumar, J., Kaise, W. J., Kraft, J. M., & Muehlbauer, F. J. (1997). Development of a DNA marker for fusarium wilt resistance in chickpea. Crop Science, 37, 1625–1629.CrossRefGoogle Scholar
  19. Meyers, B. C., Kozik, A., Griego, A., Kuang, H. H., & Michelmore, R. W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 15, 809–834.PubMedCrossRefGoogle Scholar
  20. Miklas, P. N., Kelly, J. D., Beebe, S. E., & Blair, M. W. (2006). Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica, 147, 105–131.CrossRefGoogle Scholar
  21. Millán, T., Rubio, J., Iruela, M., Daly, K., Cubero, J. I., & Gil, J. (2003). Markers associated with Ascochyta blight resistance in chickpea an their potential in marker-assisted selection. Field Crops Research, 84, 373–384.CrossRefGoogle Scholar
  22. Muehlbauer, F. J., & Kaiser, W. J. (1994). Using host plant resistance to manage biotic stresses in cool season grain legumes. Euphytica, 73, 1–10.CrossRefGoogle Scholar
  23. Polzin, K. M., Lohnes, D. G., Nickell, C. D., & Shoemaker, R. C. (1994). Integration of Rps2, Rmd, and Rj2 into linkage group J of the soybean molecular map. Journal of Heredity, 85, 300–303.Google Scholar
  24. Rakshit, S., Winter, P., Tekeoglu, M., Juarez Muñoz, J., Pfaff, T., Benko-Iseppon, A. M., Muehlbauer, F. J., & Kahl, G. (2003). DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica, 132, 23–30.CrossRefGoogle Scholar
  25. Ratnaparkhe, M. B., Santra, D. K., Tullu, A., & Muehlbauer, F. J. (1998a) Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theoretical and Applied Genetics, 96, 348–353.CrossRefGoogle Scholar
  26. Ratnaparkhe, M. B., Tekeoglu, M., & Muehlbauer, F. J. (1998b). Intersimple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theoretical and Applied Genetics, 97, 515–519.CrossRefGoogle Scholar
  27. Rubio, J., Moussa, E., Kharrat, M., Moreno, M. T., Millán, T., & Gil, J. (2003). Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. ciceris race 0 in chickpea. Plant Breeding, 122, 188–191.CrossRefGoogle Scholar
  28. Santra, D. K., Tekeoglu, M., Ratnaparkhe, M., Kaiser, W. J., & Muehlbauer, F. J. (2000). Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Science, 40, 1606–1612.CrossRefGoogle Scholar
  29. Sharma, K. D., Winter, P., Kahl, G., & Muehlbauer, F. J. (2004). Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theoretical and Applied Genetics, 108, 1243–1248.PubMedCrossRefGoogle Scholar
  30. Sharma, K. D., Chen, W., & Muehlbauer, F. J. (2005). Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Disease, 89, 385–390.CrossRefGoogle Scholar
  31. Singh, K. B., & Reddy, M. V. (1983). Inheritance of resistance to ascochyta blight in chickpea. Crop Science, 23, 9–10.CrossRefGoogle Scholar
  32. Singh, K. B., & Reddy, M. V. (1993). Resistance to six races of Ascochyta rabiei in the world germplasm collection of chickpea. Crop Science, 33, 186–189.CrossRefGoogle Scholar
  33. Song, Q. J., Marek, L. F., Shoemaker, R. C., Lark, K. G., Concibido, V. C., Delannay, X., Specht, J. E., & Cregan, P. B. (2004). A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics, 109, 122–128.PubMedCrossRefGoogle Scholar
  34. Takken, F. L. W., & Joosten, M. H. A. J. (2000). Plant resistance genes: their structure, function and evolution. European Journal of Plant Pathology, 106, 699–713.CrossRefGoogle Scholar
  35. Tekeoglu, M., Santra, D. K., Kaiser, W. J., & Muehlbauer, F. J. (2000). Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Science, 40, 1251–1256.CrossRefGoogle Scholar
  36. Tekeoglu, M., Rajesh, P. N., & Muehlbauer, F. J. (2002). Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theoretical and Applied Genetics, 105, 847–854.PubMedCrossRefGoogle Scholar
  37. Tewari, S. K., & Pandey, M. P. (1986). Genetics of resistance to ascochyta blight in chickpea (Cicer arietinum L.). Euphytica, 35, 211–215.CrossRefGoogle Scholar
  38. Tullu, A, Muehlbauer, F. J., Simon, C. J., Mayer, M. S., Kumar, J, Kaiser, W. J., & Kraft, J. M., (1998). Inheritance and linkage of a gene for resistance to race 4 of fusarium wilt and RAPD markers in chickpea. Euphytica, 102, 227–232.CrossRefGoogle Scholar
  39. Udupa, S. M., & Baum, M (2003). Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theoretical and Applied Genetics, 106, 1196–1202.PubMedGoogle Scholar
  40. Van Ooijen J. W. (2004). MAPQIL ® 5, Software for the mapping of quantitative trait loci in experimental populations. Wageningen, the Netherlands: Plant Research International.Google Scholar
  41. Van Ooijen J. W., & Voorrips R. E. (2001). Joinmap® 3.0, Software for the calculation of genetic maps. Wageningen, the Netherlands: Plant Research International.Google Scholar
  42. Williams, P. C., & Singh, U. (1987). The Chickpea–Nutritional quality and the evaluation of quality. In M. C. Saxena & K. B. Singh (Eds.), The Chickpea (pp. 329–356). Wallingford, UK: CAB International.Google Scholar
  43. Winter, P., Pfaff, T., Udupa, S. M., Hüttel, B., Sharma, P. C., Sahi, S., Arreguin-Espinoza, R., Weigand, F., Muehlbauer, F. J., & Kahl, G. (1999). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Molecular & General Genetics, 262, 90–101.CrossRefGoogle Scholar
  44. Winter, P., Benko-Iseppon, A. M., Hüttel, B., Ratnaparkhe, M., Tullu, A., Sonnante, G., Pfaff, T., Tekeoglu, M., Santra, D., Sant, V. J., Rajesh, P. N., Kahl, G., & Muehlbauer, F. J. (2000). A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum ´ C. reticulatum cross: localization of resistance gene for fusarium wilt races 4 and 5. Theoretical and Applied Genetics, 101, 1155–1163.CrossRefGoogle Scholar
  45. Winter, P., Staginnus, C., Sharma, P. C., & Kahl, G. (2003). Organisation and genetic mapping of the chickpea genome. In P. K. Jaiwal, & R. P. Singh (Eds.), Improvement strategies for leguminosae biotechnology (pp. 303–351). The Netherlands: Kluwer Academic Publishers, Dordrecht.Google Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • M. Iruela
    • 1
  • P. Castro
    • 1
  • J. Rubio
    • 1
  • J. I. Cubero
    • 2
  • C. Jacinto
    • 3
  • T. Millán
    • 2
  • J. Gil
    • 2
  1. 1.Area de Mejora y Biotecnología, IFAPAAlameda del obispoCordobaSpain
  2. 2.Departamento de GenéticaUniversidad de CórdobaCordobaSpain
  3. 3.INIFAPMexicoMexico

Personalised recommendations