Incidence and distribution of Heterobasidion and Armillaria and their influence on canopy gap formation in unmanaged mountain pine forests in the Swiss Alps

  • M. Bendel
  • F. Kienast
  • H. Bugmann
  • D. Rigling


Various disturbance factors on different spatial scales can lead to the creation of canopy gaps in forest ecosystems. In this study, we investigated the role of root rot fungi in the formation of canopy gaps in the Swiss National Park in the Central Alps. Dying or recently dead mountain pine (Pinus mugo subsp. uncinata trees (n = 172) and saplings (n = 192) from 42 canopy gaps were assessed for Armillaria and Annosum root rot. Heterobasidion annosum s.str. proved to be the dominant pathogen and was isolated from 49% of the trees and 64% of the saplings. Armillaria was found on 13% of the trees and 20% of the saplings. Three Armillaria species, A. borealis, A. cepistipes, and A. ostoyae, were identified. Armillaria ostoyae was the most frequent species, accounting for 72% of all Armillaria isolates. A total of 31 (74%) gaps were associated with H. annosum, and six (14%) with A. ostoyae. The remaining gaps were either associated with both pathogens (7%) or with other, unknown, factors (5%). Our findings suggest that the two pathogenic fungi, H. annosum s.str. and A. ostoyae, are the main reason for the large-scale mortality of mountain pines and the creation of canopy gaps in high elevation forests of the Swiss National Park.


Armillaria ostoyae Canopy gaps Forest dynamics Pinus mugo Root rot 



We would like to thank J.-M. Jeckelmann and F. Kaiser for assistance in collecting field data, S. Dingwall for English corrections to the manuscript, and H. Blauenstein and R. Graf for help in the laboratory. We are grateful to two reviewers for valuable comments on the manuscript. We would also like to thank the Swiss National Park Service for supporting our research. This project is funded by the Swiss National Science Foundation (grant Nr. 3100–066798).


  1. Brang P (1988) Decline of mountain pine (Pinus mugo ssp. uncinata) stands in the Swiss National Park – a dendrochronological approach Dendrochronologia 6: 151–162Google Scholar
  2. Cherubini P, Fontana G, Rigling D, Dobbertin M, Brang P, Innes JL (2002) Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently Journal of Ecology 90: 839–850CrossRefGoogle Scholar
  3. Dengler E (1992) Waldbau auf ökologischer Grundlage Parey Hamburg & BerlinGoogle Scholar
  4. Dobbertin M, Baltensweiler A, Rigling D (2001) Tree mortality in an unmanaged mountain pine (Pinus mugo var. uncinata) stand in the Swiss National Park impacted by root rot fungi Forest Ecology and Management 145: 79–89CrossRefGoogle Scholar
  5. Durrieu G, Beneteau A, Niocel S (1985) Armillaria obscura dans l’écosystème forestier de Cerdagne European Journal of Forest Pathology 15: 350–355CrossRefGoogle Scholar
  6. Favre J (1960) Catalogue descriptif des champignons supérieurs de la zone subalpine du Parc National Suisse Nationalparkforschung in der Schweiz 6: 1–589Google Scholar
  7. Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon Canadian Journal of Forest Research 33: 612–623CrossRefGoogle Scholar
  8. Garbelotto M, Cobb FW, Bruns TD, Otrosina WJ, Popenuck T, Slaughter G (1999) Genetic structure of Heterobasidion annosum in white fir mortality centers in California Phytopathology 89: 546–554CrossRefPubMedGoogle Scholar
  9. Gäumann E, Campell E (1932) Über eine Kiefernkrankheit im Gebiete des Ofenberges Schweizerische Zeitschrift fÜr Forstwesen 83: 329–332Google Scholar
  10. Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems Annual Review of Phytopathology 40: 13–43PubMedCrossRefGoogle Scholar
  11. Gonthier P, Garbelotto M, Nicolotti G (2003) Swiss stone pine trees and spruce stumps represent an important habitat for Heterobasidion spp. in subalpine forests Forest Pathology 33: 191–203CrossRefGoogle Scholar
  12. Gregory SC, Rishbeth J and Shaw CG (1991) Pathogenicity and virulence. In: Shaw CG, Kile GA (eds) Armillaria Root Disease Forest Service, United States Department of Agriculture Washington D.C. (pp. 76–87)Google Scholar
  13. Guillaumin J-J, Mohammed C, Anselmi N, Courtecuisse R, Gregory SC, Holdenrieder O, Intini M, Lung B, Marxmüller H, Morrison D, Rishbeth J, Termorshuizen AJ, Tirro A, Vandam B (1993) Geographical distribution and ecology of the Armillaria species in Western Europe European Journal of Forest Pathology 23: 321–341CrossRefGoogle Scholar
  14. Guthapfel N (2002) Natürliche und anthropogene Störungen in den Wäldern des Schweizerischen Nationalparks. Master’s Thesis, Swiss Federal Institute of Technology ETH, Zurich, 48 ppGoogle Scholar
  15. Hauenstein P (1998) Untersuchungen über die Struktur einer Bergföhrenbestockung im Schweizerischen Nationalpark. PhD Thesis No. 12971, Swiss Federal Institute of Technology ETH, Zurich, 177 ppGoogle Scholar
  16. Hodges CS (1969) Modes of infection and spread of Fomes annosus Annual Review of Phytopathology 7: 247–266CrossRefGoogle Scholar
  17. Kasuga T, Woods C, Woodward S, Mitchelson K (1993) Heterobasidion annosum 5.8s ribosomal DNA and internal transcribed spacer sequence – rapid identification of European intersterility groups by ribosomal DNA restriction polymorphism Current Genetics 24: 433–436PubMedCrossRefGoogle Scholar
  18. Kile GA, McDonald GI, Byler JW (1991) Ecology and disease in natural forests In: Shaw CG, Kile GA (eds) Armillaria Root Disease Forest Service, United States Department of Agriculture Washington D.C. (pp. 102–121)Google Scholar
  19. Korhonen K (1978) Interfertility and clonal size in the Armillariella mellea complex Karstenia 18: 31–42Google Scholar
  20. Korhonen K, Capretti P, Karjalainen R and Stenlid J (1998) Distribution of Heterobasidion annosum intersterility groups in Europe. In: Woodward S, Stenlid J, Karjalainen R and Hüttermann A (eds) Heterobasidion annosum: Biology, Ecology, Impact and Control. (pp. 93–104) CAB International, Wallingford, OxonGoogle Scholar
  21. Legrand P, Guillaumin J-J (1993) Armillaria species in the forest ecosystems of the Auvergne (Central France) Acta Oecologica 14: 389–403Google Scholar
  22. Liu QH, Hytteborn H (1991) Gap structure, disturbance and regeneration in a primeval Picea abies forest. Journal of Vegetation Science 2: 391–402CrossRefGoogle Scholar
  23. Parolini JD (1995) Zur Geschichte der Waldnutzung im Gebiet des heutigen Schweizerischen Nationalparks. PhD Thesis No. 11187, Swiss Federal Institute of Technology ETH, Zurich, 227 ppGoogle Scholar
  24. Peet FG, Morrison DJ, Pellow KW (1996) Rate of spread of Armillaria ostoyae in two Douglas-fir plantations in the southern interior of British Columbia Canadian Journal of Forest Research 26: 148–151CrossRefGoogle Scholar
  25. R Development Core Team (2004) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  26. Rigling D (2003) Armillaria and Annosum root diseases in a mountain pine (Pinus mugo var. uncinata) stand in the Alps In: Laflamme G, Bérubé JA, Bussières G (eds) 10th International Conference on Root and Butt Rots Lauretian Forestry Centre Québec City, Canada (pp. 35–39)Google Scholar
  27. Rigling D, Blauenstein H, Walthert L, Rigling A, Kull P, Schwyzer A, Heiniger U (1997) Rhizomorph producing Armillaria species in Norway spruce stands in Switzerland In: Delatour C, Guillaumin JJ, Lung-Escarmant B, Marçais B (eds) 9th International Conference on Root and Butt Rots INRA Editions, Les Colloques No. 89 Carcans, France (pp. 259–265)Google Scholar
  28. Risch AC, Schütz M, Krusi BO, Kienast F, Wildi O, Bugmann H (2004) Detecting successional changes in long-term empirical data from subalpine conifer forests Plant Ecology 172: 95–105CrossRefGoogle Scholar
  29. Rizzo DM, Slaughter GW (2001) Root disease and canopy gaps in developed areas of Yosemite Valley, California Forest Ecology and Management 146: 159–167CrossRefGoogle Scholar
  30. Runkle JR (1982) Patterns of disturbance in some old growth mesic forests of Eastern North America Ecology 63: 1533–1546CrossRefGoogle Scholar
  31. Shaw CG, Kile GA, (eds.) (1991). Armillaria root disease. Agricultural Handbook No. 961. USDA Forest Service Washington, D.CGoogle Scholar
  32. Slaughter GW, Rizzo DM (1999) Past forest management promoted root disease in Yosemite Valley California Agriculture 54: 17–24CrossRefGoogle Scholar
  33. van der Kamp BJ (1991) Pathogens as agents of diversity in forested landscapes Forestry Chronicle 67: 353–354Google Scholar
  34. Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds). (1998). Heterobasidion annosum: Biology, Ecology, Impact and Control CAB International Wallingford, OxonGoogle Scholar
  35. Worrall JJ (1994) Population structure of Armillaria species in several forest types. Mycologia 86: 401–407CrossRefGoogle Scholar
  36. Worrall JJ, Harrington TC (1992) Heterobasidion In: Singleton LL, Mihail JD, Rush CM (eds) Methods for Research on Soilborne Phytopathogenic Fungi The American Phytopathological Society St. Paul, Minnesota (pp. 86–90)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Bendel
    • 1
    • 2
  • F. Kienast
    • 1
  • H. Bugmann
    • 2
  • D. Rigling
    • 1
  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
  2. 2.Forest Ecology, Department of Environmental SciencesSwiss Federal Institute of Technology Zurich (ETH)ZurichSwitzerland

Personalised recommendations