European Journal of Plant Pathology

, Volume 112, Issue 2, pp 101–112 | Cite as

Spread of levan-positive populations of Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot, in central Italy

  • Guido Marchi
  • Carlo Viti
  • Luciana Giovannetti
  • Giuseppe Surico


Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot disease, has for a long time been included in subgroup 1b of phytopathogenic, fluorescent Pseudomonas species by the LOPAT determinative tests (production of levan, oxidase, pectinolytic and arginine dihydrolase activity, tobacco hypersensitivity). Pseudomonas savastanoi pv. savastanoi differs from the Pseudomonads in subgroup 1a only in being levan-negative. However, in 1990, during a survey on the spread of olive knot in Tuscany, levan-positive isolates of P. savastanoi pv. savastanoi were isolated from knots on two olive trees in an orchard in the province of Florence (Bagno a Ripoli). Some years later, to assess the further spread of levan production in populations of P. savastanoi pv. savastanoi, the survey was extended to 39 other orchards randomly scattered across Tuscany, and levan-positive bacteria were found in approximately 38% of these orchards. Phenotypic, genotypic and pathogenic characterisation allowed these levan-positive isolates to be assigned to P. savastanoi pv. savastanoi. The data suggest that in Tuscan olive orchards, levan-positive and levan-negative subpopulations of this phytopathogenic bacterium can coexist on the same plant. On the basis of the results obtained we suggest that subgroups 1a and 1b of the LOPAT determinative scheme should be combined, and that P. savastanoi should be considered a bacterial species that can be either levan-negative or levan-positive.


bacterial spread lscC gene Olea europaea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anzai, Y, Kim, H, Park, JY, Wakabayashi, H, Oyazu, H 2000Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequenceInternational Journal of Systematic and Evolutionary Microbiology5015631589PubMedGoogle Scholar
  2. Bradbury, JF 1986Pseudomonas. In: Guide to Plant Pathogenic Bacteria. CAB InternationalFarnham RoyalSlough, UK110185Google Scholar
  3. Bultreys, A, Gheysen, I, Maraite, H, de Hoffmann, E 2001Characterization of fluorescent and nonfluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identificationApplied and Environmental Microbiology6717181727CrossRefPubMedGoogle Scholar
  4. Comai, L, Kosuge, T 1982Cloning and characterization of iaaM a virulence determinant of Pseudomonas savastanoiJournal of Bacteriology1494046PubMedGoogle Scholar
  5. El-Banoby, FE, Rudolph, K 1979Induction of water-soaking in plant leaves by extracellular polysaccharides from phytopathogenic pseudomonads and xanthomonadsPhysiological Plant Pathology15341349Google Scholar
  6. Ercolani, GL 1983Variability among isolates of Pseudomonas syringae pv savastanoi from the phylloplane of the oliveJournal of General Microbiology129901916PubMedGoogle Scholar
  7. Ercolani, GL 1985Factor analysis of Pseudomonas syringae pv. savastanoi on the phylloplane of the oliveMicrobial Ecology114149Google Scholar
  8. Gardan, L, Bollet, C, Abu Ghorrah, M, Grimont, F, Grimont, PAD 1992DNA relatedness among the pathovar strains of Pseudomonas syringae subsp savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov.International Journal of Systematic Bacteriology42606612Google Scholar
  9. González, AJ, Rosario Rodicio, M, Carmen Mendoza, M 2003Identification of an emergent and atypical Pseudomonas viridiflava lineage causing bacteriosis in plants of agronomic importance in a Spanish regionApplied and Environmental Microbiology6929362941CrossRefPubMedGoogle Scholar
  10. Hettwer, U, Jaeckel, FR, Boch, J, Meyer, M, Rudolph, K, Ulrich, MS 1998Cloning, nucleotide sequence and expression in Escherichia coli of levansucrase genes from the plant pathogens Pseudomonas syringae pv. glycinea and P. syringae pv. phaseolicolaApplied and Environmental Microbiology6431803187PubMedGoogle Scholar
  11. Iacobellis, NS, Sisto, A, Surico, G 1993Occurrence of unusual strains of Pseudomonas syringae subsp. savastanoi on olive in central ItalyEPPO Bulletin23429435Google Scholar
  12. Janse, JD 1981The bacterial disease of ash (Fraxinus excelsior), caused by Pseudomonas syringae subsp. savastanoi pv. fraxini II. Etiology and taxonomic considerationsEuropean Journal of Forest Pathology11425438Google Scholar
  13. Jing, Y, Penaloza-Vazquez, A, Chakrabarty, A, Bender, CL 1999Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv syringaeMolecular Microbiology33712720CrossRefPubMedGoogle Scholar
  14. Jukes TH and Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism (pp 21–132) Academic Press, New York.Google Scholar
  15. Kasapis, S, Morris, ER, Gross, M, Rudolph, K 1994Solution properties of levan polysaccharide from Pseudomonas syringae pv. phaseolicola, and its possible primary role as a blocker of recognition during pathogenesisCarbohydrates Polymers235564CrossRefGoogle Scholar
  16. King, ED, Ward, MK, Raney, DE 1954Two simple media for the demonstration of pyocyanin and fluoresceinJournal of Laboratory and Clinical Medicine44301307PubMedGoogle Scholar
  17. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stockebzendt E and Goodfellow M (eds) Nucleic acid techniques in bacterial systematics (pp 115–175) Wiley, New YorkGoogle Scholar
  18. Lelliott, RA, Billing, E, Hayward, AC 1966A determinative scheme for fluorescent plant pathogenic bacteriaJournal of Applied Bacteriology29470478PubMedGoogle Scholar
  19. Lelliott RA and Stead DE (1987) Diagnostic procedures for bacterial plant diseases. In: Preece TF Methods in Plant Pathology Vol. 2 (pp 37–131) Blackwell, Oxford, UKGoogle Scholar
  20. Lindow, SE, Brandl, MT 2003Microbiology of the phyllosphereApplied and Environmental Microbiology6918751883CrossRefPubMedGoogle Scholar
  21. Sasser, M 1990‘‘Tracking” a strain using the microbial identification system.Technical note 102. Microbial ID Inc.Newark, DE.Google Scholar
  22. Savastano L (1878) Il bacillo della tubercolosi dell_olivo Rendicontazione dell_Accademia dei Lincei 5: 2_ sem., fasc. 3 Google Scholar
  23. Schaad NW (1988) Initial identification of common genera. In: NW Schaad Laboratory Guide for Identification of Plant Pathogenic Bacteria (pp. 1–15) APS Press, St Paul, MNGoogle Scholar
  24. Schaad, NW, Vidaver, AK, Lacy, GH, Rudolph, K, Jones, JB 2000Evaluation of proposed amended names of several Pseudomonads and Xanthomonads and recommendationsPhytopathology90208213Google Scholar
  25. Scortichini, M, Rossi, MP, Salerno, M 2004Relationship of genetic structure of Pseudomonas savastanoi pv savastanoi populations from Italian olive trees and patterns of host genetic diversityPlant Pathology53491497CrossRefGoogle Scholar
  26. Skerman, VBD, McGowan, V, Sneath, PHA 1980Approved list of bacterial namesInternational Journal of Systematic Bacteriology30225420Google Scholar
  27. Smith, ER, Rorer, JB 1904The olive tubercoleScience480416417Google Scholar
  28. Surico G and Marchi G (2003) Olive knot disease: new insights in the ecology, physiology and epidemiology of Pseudomonas savastanoi pv. savastanoi. In: Iacobellis NS, Collmer A, Utcheson SW, Mansfield JW, Morris CE, Murillo J, Schaad NW, Stead DE, Surico G and Ullrich MS (eds), Pseudomonas syringae and related pathogens: Biology and Genetic (pp 17–28) Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  29. Surico, G, Sparapano, L, Lerario, P, Durbin, RD, Iacobellis, NS 1975Cytokinin-like activity in extracts from culture filtrates of Pseudomonas savastanoiExperientia31929930Google Scholar
  30. Surico, G, Iacobellis, NS, Sisto, A 1985Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pvsavastanoiPhysiological Plant Pathology26309320Google Scholar
  31. Sutherland, I 1985Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides Annual Review of Microbiology3943270CrossRefGoogle Scholar
  32. Tommasini, R 1992Degree thesis (Tesi di Laurea)Università degli StudiFlorence, ItalyGoogle Scholar
  33. Van de Peer, Y, De Wachter, R 1997Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sitesComputer Applications in the Biosciences13227230PubMedGoogle Scholar
  34. Weisburg, WG, Barns, SM, Pelletier, DA, Lane, DJ 199116S ribosomal DNA amplification for phylogenetic studyJournal of Bacteriology173697703PubMedGoogle Scholar
  35. Young, JM, Dye, DW, Bradbury, JF, Panagoupoulos, CG, Robbs, CF 1978A proposed nomenclature and classification for plant pathogenic bacteriaNew Zealand Journal of Agricultural Research21153174Google Scholar
  36. Young, JM, Bradbury, JF, Davis, RE, Dickey, RS, Ercolani, GL, Hayward, AC, Vidaver, AK 1991Nomenclatural revisions of plant pathogenic bacteria and list of names 1980–1988. ISPP Subcommittee on Taxonomy of Phytopathogenic BacteriaReview of Plant Pathology70211221Google Scholar
  37. Young, JM, Saddler, GS, Takikawa, Y, De Boer, SH, Vauterin, L, Gardan, L, Gvozdyak, RI, Stead, DE 1996Names of plant pathogenic bacteria 1864–1995Review of Plant Pathology75721763Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Guido Marchi
    • 1
  • Carlo Viti
    • 1
  • Luciana Giovannetti
    • 1
  • Giuseppe Surico
    • 1
  1. 1.Università degli StudiDipartimento di Biotecnologie AgrarieFirenzeItaly

Personalised recommendations