European Journal of Plant Pathology

, Volume 111, Issue 1, pp 1–8 | Cite as

Molecular characterisation of vegetative compatibility groups in Fusarium oxysporum f. sp. radicis-lycopersici and f. sp. lycopersici by random amplification of polymorphic DNA and microsatellite-primed PCR

  • Virgilio Balmas
  • Barbara Scherm
  • Pietro Di Primo
  • Domenico Rau
  • Angela Marcello
  • Quirico Migheli


Random amplification of polymorphic DNA (RAPD-PCR) analysis was conducted on 48 isolates of Fusarium oxysporum f. sp. radicis-lycopersici (F.o.r.l.) from different geographic regions, representing all known vegetative compatibility groups (VCGs) except VCG 0097 and VCG 0099 and on eight isolates of F.oxysporum f. sp. lycopersici (F.o.l.), representing VCGs 0030, 0031, 0032 and 0033. Upon UPGMA (unweighted pair-group method with arithmetic averages) analysis of 86 RAPD-PCR markers generated by 16 informative primers and 44 markers obtained with eight microsatellite primers, a close relatedness was evident for F.o.r.l. isolates in VCGs 0090, 0092, 0096, and, to a lesser extent, for those in VCG 0093. Representatives of VCG 0091 formed a distinct group, while F.o.r.l. isolates in VCGs 0094 and 0098 were not distinguishable by the tested markers, most of which were also shared by F.o.l. isolates belonging to VCGs 0031 and 0033. F.o.l. isolates in VCGs 0030 and 0032 shared most of the molecular markers. The correlation between RAPD-PCR and microsatellite genetic distance was highly significant (R 2 = 0.77; P by Mantel test < 0.001). The molecular variability observed in both formae speciales is discussed in relation to the development of F.o.r.l.- and F.o.l.-specific diagnostic tools.


Fusarium crown and root rot Fusarium wilt genetic structure phytodiagnosis tomato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barve, MP, Haware, MP, Sainani, MN, Ranjekar, PK, Gupta, VS 2001Potential of microsatellites to distinguish four races of Fusarium oxysporum f. sp. ciceri prevalent in IndiaTheoretical and Applied Genetics102138147Google Scholar
  2. Brayford, D 1996Fusarium oxysporum f. sp. radicis-lycopersici. IMI Descriptions of fungi and bacteriaMycopathologia1336163Google Scholar
  3. Cai, G, Gale, LR, Schneider, RW, Kistler, HC, Davis, RM, Elias, KS, Miyao, EM 2003Origin of race 3 of Fusarium oxysporum f. sp. lycopersici at a single site in CaliforniaPhytopathology9310141022PubMedGoogle Scholar
  4. Carbonell, C, Cifuentes, D, Tello, J, Cenis, JL 1994Differentiation of Fusarium oxysporum f. sp. lycopersici and F.o. f. sp. radicis-lycopersici and its detection in plant by RAPD markersBoletin de Sanidad Vegetal20919926(in Spanish)Google Scholar
  5. DeScenzo, RA, Harrington, TC 1994Use of (CAT)5 as a DNA fingerprinting probe for fungiPhytopathology84534540Google Scholar
  6. Di Primo, P, Cartia, G, Katan, T 2001Vegetative compatibility and heterokaryon stability in Fusarium oxysporum f. sp. radicis-lycopersici from ItalyPlant Pathology50371382Google Scholar
  7. Elias, KS, Schneider, RW 1992Genetic diversity within and among races and vegetative compatibility groups of Fusarium oxysporum f. sp. radicis-lycopersici as determined by isozyme analysisPhytopathology8214211427Google Scholar
  8. Elias, KS, Zamir, D, Lichtman-Pleban, T, Katan, T 1993Population structure of Fusarium oxysporum f.sp. lycopersici: restriction fragment length polymorphisms provide genetic evidence that vegetative compatibility group is an indicator of evolutionary origin Molecular Plant-Microbe Interactions6565572Google Scholar
  9. Gale, LR, Katan, T, Kistler, HC 2003The probable center of origin of Fusarium oxysporum f. sp. lycopersici VCG 0033Plant Disease8714331438Google Scholar
  10. Geistlinger, J, Weising, K, Kaiser, WJ, Kahl, G 1997Detection of microsatellite fingerprint markers and their Mendelian inheritance in Ascochyta rabieiMolecular and General Genetics256298305PubMedGoogle Scholar
  11. Hantula, J, Dusabenyagasani, M, Hamelin, RC 1996Random amplified microsatellites (RAMS): A novel method for characterizing genetic variation within fungiEuropean Journal of Forest Pathology26159166Google Scholar
  12. Jarvis, WR 1988Fusarium crown and root rot of tomatoesPhytoprotection694964Google Scholar
  13. Jarvis, WR, Thorpe, H 1976Susceptibility of Lycopersicon species and hybrids to the foot and root rot pathogen Fusarium oxysporumPlant Disease Reporter6010271031Google Scholar
  14. Kalman, S, Zamir, D, Katan, T 2001Restriction fragment length polymorphism (RFLP) analysis reveals that Fusarium oxysporum f. sp. radicis-lycopersici is polyphyleticPhytoparasitica29254255Google Scholar
  15. Katan, T, Katan, J 1999Vegetative compatibilty grouping in Fusarium oxysporum f. sp. radicis-lycopersici from the UK, the Netherlands, Belgium and FrancePlant Pathology48541549Google Scholar
  16. Katan, T, Zamir, D, Sarfatti, M, Katan, J 1991Vegetative compatibility groups and subgroups in Fusarium oxysporum f. sp. radicis-lycopersiciPhytopathology81255262Google Scholar
  17. Katan, T, Shlevin, E, Katan, J 1997Sporulation of Fusarium oxysporum f. sp. lycopersici on stem surfaces of tomato plants and aerial dissemination of inoculumPhytopathology87712719PubMedGoogle Scholar
  18. Maniatis, T, Fritsch, EF, Sambrook, J 1982Molecular Cloning: A Laboratory ManualCold Spring Harbor LaboratoryCold Spring Harbor, USAGoogle Scholar
  19. Mantel, N 1967The detection of disease clustering and a generalized regression approachCancer Research27209220PubMedGoogle Scholar
  20. Menzies, JG, Koch, C, Seywerd, F 1990Additions to the host range of Fusarium oxysporum f. sp. radicis-lycopersiciPlant Disease74569572Google Scholar
  21. Mes, JJ, Doorn, J, Roebroeck, EJA, Egmond, E, Aartrijk, J, Boonekamp, PM 1994Restriction fragment length polymorphisms, races and vegetative compatibility groups within a worldwide collection of Fusarium oxysporum f. sp. lycopersici.Plant Pathology43362370Google Scholar
  22. Meyer, W, Mitchell, TG, Freedman, EZ, Vilgalys, R 1993Hybridization probes for conventional DNA fingerprinting used as single primers for the polymerase chain reaction to distinguish strains of Cryptococcus neoformansJournal of Clinical Microbiology3122742280PubMedGoogle Scholar
  23. Migheli, Q, Friard, O, Tedesco, D, Musso, MR, Gullino, ML 1996Stability of transformed antagonistic Fusarium oxysporum strains in vitro and in soil microcosmsMolecular Ecology5641649Google Scholar
  24. Nei M and Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA 76: 5269–5273 Google Scholar
  25. Rekah, Y, Shtienberg, D, Katan, J 2001Population dynamics of Fusarium oxysporum f. sp. radicis-lycopersici in relation to the onset of Fusarium crown and root rot of tomato.European Journal of Plant Pathology107367375Google Scholar
  26. Rosewich, UL, Pettway, RE, Katan, T, Kistler, HC 1999Population genetic analysis corroborates dispersal of Fusarium oxysporum f. sp. radicis-lycopersici from Florida to Europe.Phytopathology89623630PubMedGoogle Scholar
  27. Rowe, RC, Farley, JD, Coplin, DL 1977Airborne spore dispersal and recolonization of steamed soil by Fusarium oxsporum in tomato greenhousesPhytopathology6715131517CrossRefGoogle Scholar
  28. Simioniuc, D, Uptmoor, R, Friedt, W, Ordon, F 2002Genetic diversity and relationships among pea cultivars revealed by RAPDs and AFLPsPlant Breeding121429435Google Scholar
  29. Sun, GL, Diaz, O, Salomon, B, Bothmer, R 1999Genetic diversity in Elymus caninus as revealed by isozyme, RAPD, and microsatellite markersGenome42420431PubMedGoogle Scholar
  30. Peer, Y, De Wachter, R 1994TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environmentComputer Applications in the Biosciences10569570PubMedGoogle Scholar
  31. Weising, K, Atkinson, RG, Gardner, RC 1995Genomic fingerprinting by microsatellite-primed PCR: a critical evaluationPCR Methods Applications4249255Google Scholar
  32. Welsh, J, McClelland, M 1990Fingerprinting genomes using PCR with arbitrary primersNucleic Acids Research1872137218PubMedGoogle Scholar
  33. Williams, JGK, Kubelik, AR, Livak, KJ, Rafalski, JA, Tingey, SV 1990DNA polymorphisms amplified by arbitrary primers are useful as genetic markersNucleic Acids Research1865316535PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Virgilio Balmas
    • 1
  • Barbara Scherm
    • 1
  • Pietro Di Primo
    • 2
  • Domenico Rau
    • 3
  • Angela Marcello
    • 1
  • Quirico Migheli
    • 1
  1. 1.Dipartimento di Protezione delle Piante – Center for Biotechnology Development and Biodiversity ResearchUniversity of SassariSassariItaly
  2. 2.Dipartimento di Agrochimica ed AgrobiologiaUniversità “Mediterranea” di Reggio CalabriaReggio CalabriaItaly
  3. 3.Dipartimento di Scienze Agronomiche e Genetica Vegetale AgrariaUniversity of SassariSassariItaly

Personalised recommendations