Thyroid function, sex hormones and sexual function: a Mendelian randomization study


Hypothyroidism and hyperthyroidism are observationally associated with sex hormone concentrations and sexual dysfunction, but causality is unclear. We investigated whether TSH, fT4, hypo- and hyperthyroidism are causally associated with sex hormones and sexual function. We used publicly available summary statistics from genome-wide association studies on TSH and fT4 and hypo- and hyperthyroidism from the ThyroidOmics Consortium (N ≤ 54,288). Outcomes from UK Biobank (women ≤ 194,174/men ≤ 167,020) and ReproGen (women ≤ 252,514) were sex hormones (sex hormone binding globulin [SHBG], testosterone, estradiol, free androgen index [FAI]) and sexual function (ovulatory function in women: duration of menstrual period, age at menarche and menopause, reproductive lifespan, and erectile dysfunction in men). We performed two-sample Mendelian randomization (MR) analyses on summary level, and unweighted genetic risk score (GRS) analysis on individual level data. One SD increase in TSH was associated with a 1.332 nmol/L lower (95% CI: − 0.717,− 1.946; p = 2 × 10–5) SHBG and a 0.103 nmol/l lower (− 0.051,V0.154; p = 9 × 10–5) testosterone in two-sample MR, supported by the GRS approach. Genetic predisposition to hypothyroidism was associated with decreased and genetic predisposition to hyperthyroidism with increased SHBG and testosterone in both approaches. The GRS for fT4 was associated with increased testosterone and estradiol in women only. The GRS for TSH and hypothyroidism were associated with increased and the GRS for hyperthyroidism with decreased FAI in men only. While genetically predicted thyroid function was associated with sex hormones, we found no association with sexual function.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

All data analyzed during this study are either publically available through and, or available through application to the UK Biobank Resource.

Code availability

We used standard statistical software (STATA and R) and packages to perform the analyses.


  1. 1.

    Carosa E, Lenzi A, Jannini EA. Thyroid hormone receptors and ligands, tissue distribution and sexual behavior. Mol Cell Endocrinol. 2018;467:49–59.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    La Vignera S, Vita R, Condorelli RA, et al. Impact of thyroid disease on testicular function. Endocrine. 2017;58(3):397–407.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Silva JF, Ocarino NM, Serakides R. Thyroid hormones and female reproduction. Biol Reprod. 2018;99(5):907–21.

    Article  PubMed  Google Scholar 

  4. 4.

    Selva DM, Hammond GL. Thyroid hormones act indirectly to increase sex hormone-binding globulin production by liver via hepatocyte nuclear factor-4alpha. J Mol Endocrinol. 2009;43(1):19–27.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Ben-Rafael Z, Struass JF 3rd, Arendash-Durand B, Mastroianni L Jr, Flickinger GL. Changes in thyroid function tests and sex hormone binding globulin associated with treatment by gonadotropin. Fertil Steril. 1987;48(2):318–20.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Arafah BM. Increased need for thyroxine in women with hypothyroidism during estrogen therapy. N Engl J Med. 2001;344(23):1743–9.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Gabrielson AT, Sartor RA, Hellstrom WJG. The Impact of Thyroid Disease on Sexual Dysfunction in Men and Women. Sex Med Rev. 2019;7(1):57–70.

    Article  PubMed  Google Scholar 

  8. 8.

    Phillips DI, Lazarus JH, Butland BK. The influence of pregnancy and reproductive span on the occurrence of autoimmune thyroiditis. Clin Endocrinol (Oxf). 1990;32(3):301–6.

    CAS  Article  Google Scholar 

  9. 9.

    Krassas GE, Markou KB. The impact of thyroid diseases starting from birth on reproductive function. Hormones (Athens). 2019;18(4):365–81.

    Article  Google Scholar 

  10. 10.

    Kotopouli M, Stratigou T, Antonakos G, Christodoulatos GS, Karampela I, Dalamaga M. Early menarche is independently associated with subclinical hypothyroidism: a cross-sectional study. Horm Mol Biol Clin Investig. 2019.

    Article  PubMed  Google Scholar 

  11. 11.

    Dittrich R, Beckmann MW, Oppelt PG, et al. Thyroid hormone receptors and reproduction. J Reprod Immunol. 2011;90(1):58–66.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Bates JN, Kohn TP, Pastuszak AW. Effect of thyroid hormone derangements on sexual function in men and women. Sex Med Rev. 2020;8(2):217–30.

    Article  PubMed  Google Scholar 

  13. 13.

    Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.

    Article  PubMed  Google Scholar 

  14. 14.

    Teumer A, Chaker L, Groeneweg S, et al. Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat Commun. 2018;9(1):4455.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48(7):709–17.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. Eur J Epidemiol. 2018;33(10):947–52.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Spiller W, Davies NM, Palmer TM. Software application profile: mrrobust—a tool for performing two-sample summary Mendelian randomization analyses. Int J Epidemiol. 2018;48(3):684–90.

    Article  PubMed Central  Google Scholar 

  18. 18.

    Hartwig FP, Davies NM, Hemani G, Davey SG. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol. 2016;45(6):1717–26.

    Article  PubMed  Google Scholar 

  19. 19.

    Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36(11):1783–802.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hemani G, Bowden J, Davey SG. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195-r208.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34(21):2926–40.

    Article  Google Scholar 

  23. 23.

    Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45(6):1961–74.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Moulton VR. Sex hormones in acquired immunity and autoimmune disease. Front Immunol. 2018;9:2279.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Medici M, Porcu E, Pistis G, et al. Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 2014;10(2):e1004123.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Brčić L, Barić A, Gračan S, et al. Genome-wide association analysis suggests novel loci for Hashimoto’s thyroiditis. J Endocrinol Invest. 2019;42(5):567–76.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Keevil BG, Adaway J. Assessment of free testosterone concentration. J Steroid Biochem Mol Biol. 2019;190:207–11.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Benhadi N, Wiersinga WM, Reitsma JB, Vrijkotte TG, Bonsel GJ. Higher maternal TSH levels in pregnancy are associated with increased risk for miscarriage, fetal or neonatal death. Eur J Endocrinol. 2009;160(6):985–91.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Cooper DS, Biondi B. Subclinical thyroid disease. Lancet. 2012;379(9821):1142–54.

    Article  PubMed  Google Scholar 

  32. 32.

    Liu H, Shan Z, Li C, et al. Maternal subclinical hypothyroidism, thyroid autoimmunity, and the risk of miscarriage: a prospective cohort study. Thyroid. 2014;24(11):1642–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


The two-sample MR approach is based on data freely available from the public domain. The authors would like to thank the ThyroidOmics consortium, 23andMe, UK Biobank, Neale lab, and ReproGen for sharing the data and making this project possible. This research has been conducted using the UK Biobank Resource under Application Number 53723.


ADK is funded by an unrestricted grant by Novo Nordisk. AK is supported by the Exchange in Endocrinology Expertise (3E) program of the European Union of Medical Specialists (UEMS), Section and Board of Endocrinology. AP is funded by the NIHR Barts Biomedical Research Centre.

Author information




Study conception and design: ADK, CE, AK, MM. Analyses: ADK, EM, AP. Draft: ADK, CE. Supervision: CE. Interpretation of results, critical editing and agreement to submit the manuscript: all authors.

Corresponding author

Correspondence to Alisa D. Kjaergaard.

Ethics declarations

Conflicts of interest

All the authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kjaergaard, A.D., Marouli, E., Papadopoulou, A. et al. Thyroid function, sex hormones and sexual function: a Mendelian randomization study. Eur J Epidemiol (2021).

Download citation


  • Mendelian randomization
  • Thyroid function
  • SHBG
  • Testosterone
  • Reproductive lifespan
  • Erectile dysfunction