Skip to main content

Advertisement

Log in

Effect heterogeneity and variable selection for standardizing causal effects to a target population

  • METHODS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The participants in randomized trials and other studies used for causal inference are often not representative of the populations seen by clinical decision-makers. To account for differences between populations, researchers may consider standardizing results to a target population. We discuss several different types of homogeneity conditions that are relevant for standardization: Homogeneity of effect measures, homogeneity of counterfactual outcome state transition parameters, and homogeneity of counterfactual distributions. Each of these conditions can be used to show that a particular standardization procedure will result in an unbiased estimate of the effect in the target population, given assumptions about the relevant scientific context. We compare and contrast the homogeneity conditions, in particular their implications for selection of covariates for standardization and their implications for how to compute the standardized causal effect in the target population. While some of the recently developed counterfactual approaches to generalizability rely upon homogeneity conditions that avoid many of the problems associated with traditional approaches, they often require adjustment for a large (and possibly unfeasible) set of covariates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weiss NS. Generalizing from the results of randomized studies of treatment: can non-randomized studies be of help? Eur J Epidemiol. 2019;34(8):715–8.

    Article  PubMed  Google Scholar 

  2. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology (Cambridge, Mass.). 2004;15(5):615–25.

    Article  Google Scholar 

  3. Suzuki E, Tsuda T, Mitsuhashi T, Mansournia MA, Yamamoto E. Errors in causal inference: an organizational schema for systematic error and random error. Ann Epidemiol. 2016;26(11):788–93.

    Article  PubMed  Google Scholar 

  4. Huitfeldt A, Goldstein A, Swanson SA. The choice of effect measure for binary outcomes: introducing counterfactual outcome state transition parameters. Epidemiol Methods. 2018;7(1):14.

    Google Scholar 

  5. Dahabreh IJ, Hernán MA. Extending inferences from a randomized trial to a target population. Eur J Epidemiol. 2019;34(8):719–22.

    Article  CAS  PubMed  Google Scholar 

  6. VanderWeele TJ. Confounding and effect modification: distribution and measure. Epidemiol Methods. 2012;1(1):55–82.

    CAS  Google Scholar 

  7. Greenland S. Interpretation and estimation of summary ratios under heterogeneity. Stat Med. 1982;1(3):217–27.

    Article  CAS  PubMed  Google Scholar 

  8. Bernard S, Neville KA, Nguyen AT, Flockhart DA. Interethnic differences in genetic polymorphisms of CYP2d6 in the U.S. population: clinical implications. Oncologist. 2006;11(2):126–35.

    Article  CAS  PubMed  Google Scholar 

  9. Huitfeldt A, Stensrud MJ, Suzuki E. On the collapsibility of measures of effect in the counterfactual causal framework. Emerg Themes Epidemiol. 2019;16(1):1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cochran WG. The comparison of percentages in matched samples. Biometrika. 1950;37(3/4):256–66.

    Article  CAS  PubMed  Google Scholar 

  11. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ Br Med J. 2003;327(7414):557–60.

    Article  Google Scholar 

  12. Iwasaki M, Yamamoto S, Otani T, Inoue M, Hanaoka T, Sobue T, Tsugane S, Japan Public Health Center-based Prospective Study (JPHC Study) Group. Generalizability of relative risk estimates from a well-defined population to a general population. Eur J Epidemiol. 2006;21(4):253–62.

    Article  PubMed  Google Scholar 

  13. Poole C, Shrier I, VanderWeele TJ. Is the risk difference really a more heterogeneous measure? Epidemiology. 2015;26(5):714–8.

    Article  PubMed  Google Scholar 

  14. Spiegelman D, VanderWeele TJ. Evaluating public health interventions: 6. modeling ratios or differences? Let the data tell us. Am J Public Health. 2017;107(7):1087–91.

    Article  PubMed  PubMed Central  Google Scholar 

  15. The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP). Guide on Methodological Standards in Pharmacoepidemiology (Revision 7). EMA/95098/2010.

  16. Sheps MC. Shall we count the living of the dead? N Engl J Med. 1958;259(25):1210–4.

    Article  CAS  PubMed  Google Scholar 

  17. Deeks JJ. Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes. Stat Med. 2002;21(11):1575–600.

    Article  PubMed  Google Scholar 

  18. Baker R, Jackson D. A new measure of treatment effect for random-effects meta-analysis of comparative binary outcome data. 2018. ArXiv:1806.03471.

  19. Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 9: analysing data and undertaking meta-analyses. In: Higgins JPT, Green S, editors. Handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). New York: Wiley; 2011.

  20. Glasziou PP, Irwig LM. An evidence based approach to individualising treatment. BMJ. 1995;311(7016):1356–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lesko CR, Buchanan AL, Westreich D, Edwards JK, Hudgens MG, Cole SR. Generalizing study results: a potential outcomes perspective. Epidemiology. 2017;28:553–61.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Murray EJ, Robins JM, Seage GR, Freedberg KA, Hernán MA. A comparison of agent-based models and the parametric G-formula for causal inference. Am J Epidemiol. 2017;186(2):131–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stuart EA, Cole SR, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the generalizability of results from randomized trials. J R Stat Soc Ser A Stat Soc. 2001;174(2):369–86.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 trial. Am J Epidemiol. 2010;172(1):107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. J Am Stat Assoc. 1952;47(260):663–85.

    Article  Google Scholar 

  26. Robins JM. Association, causation, and marginal structural models. Synthese. 1999;121(1–2):151–79.

    Article  Google Scholar 

  27. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology (Cambridge, Mass.). 2000;11(5):550–60.

    Article  CAS  Google Scholar 

  28. Westreich D, Edwards JK, Lesko CR, Stuart E, Cole SR. Transportability of trial results using inverse odds of sampling weights. Am J Epidemiol. 2017;186(8):1010–4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lu H, Cole SR, Hall HI, Schisterman EF, Breger TL, Edwards JK, Westreich D. Generalizing the per-protocol treatment effect: the case of ACTG A5095. Clin Trials. 2018;16(1):52–62.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Susukida R, Crum RM, Ebnesajjad C, Stuart EA, Mojtabai R. Generalizability of findings from randomized controlled trials: application to the National Institute of Drug Abuse Clinical Trials Network. Addiction. 2017;112(7):1210–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Buchanan AL, Hudgens MG, Cole SR, Mollan KR, Sax PE, Daar ES, Adimora AA, Eron JJ, Mugavero MJ. Generalizing evidence from randomized trials using inverse probability of sampling weights. J R Stat Soc Ser A (Stat Soc). 2018;181(4):1193–209.

    Article  Google Scholar 

  32. Dahabreh IJ, Robertson SE, Tchetgen Tchetgen EJ, Stuart EA, Hernán MA. Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals. Biometrics. 2018;75(2):685–94.

    Article  Google Scholar 

  33. Nguyen TQ, Ebnesajjad C, Cole SR, Stuart EA. Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects. Ann Appl Stat. 2017;11(1):225–47.

    Article  Google Scholar 

  34. Breskin A, Westreich D, Cole SR, Edwards JK. Using bounds to compare the strength of exchangeability assumptions for internal and external validity. Am J Epidemiol. 2019;188(7):1355–60. https://doi.org/10.1093/aje/kwz060.

    Article  PubMed  Google Scholar 

  35. Westreich D, Edwards JK, Lesko CR, Cole SR, Stuart EA. Target validity and the hierarchy of study designs. Am J Epidemiol. 2019;188(2):438–43.

    Article  PubMed  Google Scholar 

  36. Pearl J, Bareinboim E. Transportability of causal and statistical relations: a formal approach. In: Twenty-fifth AAAI conference on artificial intelligence, August 2011.

  37. Bareinboim E, Pearl J. A general algorithm for deciding transportability of experimental results. J Causal Inference. 2013;1(1):107–34.

    Article  Google Scholar 

  38. Pearl J, Bareinboim E. External validity: from do-calculus to transportability across populations. Stat Sci. 2014;29(4):579–95.

    Article  Google Scholar 

  39. Bareinboim E, Pearl J. Causal inference and the data-fusion problem. Proc Natl Acad Sci. 2016;113(27):7345–52.

    Article  CAS  PubMed  Google Scholar 

  40. Pearl J. Causality: models, reasoning and inference. 2nd ed. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  41. Dahabreh IJ, Robins JM, Haneuse SJ-PA, Hernán MA. Generalizing causal inferences from randomized trials: counterfactual and graphical identification, June 2019. arXiv:1906.10792 [stat].

Download references

Acknowledgements

The authors are grateful to Dr. Issa Dahabreh and two anonymous reviewers for suggestions that greatly improved the manuscript. Any remaining errors are our own.

Funding

The authors received no specific funding for this work. Dr. Stensrud is supported by the Research Council of Norway, Grant NFR239956/F20 - Analyzing clinical health registries: Improved software and mathematics of identifiability. Dr. Swanson is supported by NWO/ZonMw Veni Grant (91617066). Dr. Suzuki is supported by Japan Society for the Promotion of Science (KAKENHI Grant Numbers JP17K17898, JP15K08776, and JP18K10104) and The Okayama Medical Foundation. Dr. Huitfeldt was supported by the Effective Altruism Hotel Blackpool during revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Huitfeldt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proofs of identifying expressions from Table 2. We note that these proofs are not new to this paper, and are included here only for completeness:

Approach 1

$$\begin{aligned} \begin{aligned}&\sum _v{\left[ {\text {RR}}_{s,v}\times {\text {Pr}}(V=v \vert Y^{a=0}=1, P=t)\right] }\\&\quad =\sum _v{\left[ {\text {RR}}_{t,v}\times {\text {Pr}}(V=v \vert Y^{a=0}=1, P=t)\right] } (\because {{\text {RR}}_{s,v}={\text {RR}}_{t,v})}\\&\quad =\sum _v{\left[ \frac{{\text {Pr}}(Y^{a=1}=1 \vert V=v, P=t) \times {\text {Pr}}(V=v \vert Y^{a=0}=1, P=t)}{{\text {Pr}}(Y^{a=0}=1 \vert V=v, P=t)} \right] } \\&\quad =\sum _v{\left[ \frac{{\text {Pr}}(Y^{a=1}=1 \vert V=v, P=t)\times {\text {Pr}}(Y^{a=0}=1 \vert V=v, P=t)\times {\text {Pr}}(V=v \vert P=t)}{{\text {Pr}}(Y^{a=0}=1 \vert V=v, P=t)\times {\text {Pr}}(Y^{a=0}=1 \vert P=t)}\right] }&\\&\quad =\sum _v{\left[ \frac{{\text {Pr}}(Y^{a=1}=1\vert V=v, P=t)\times {\text {Pr}}(V=v \vert P=t)}{{\text {Pr}}(Y^{a=0}=1 \vert P=t)}\right] }\\&\quad =\frac{\sum _v{\left[ {\text {Pr}}(Y^{a=1}=1\vert V=v, P=t)\times {\text {Pr}}(V=v \vert P=t)\right] }}{{\text {Pr}}(Y^{a=0}=1 \vert P=t)}\\&\quad =\frac{{\text {Pr}}(Y^{a=1}=1 \vert P=t)}{{\text {Pr}}(Y^{a=0}=1 \vert P=t)}\\&\quad ={\text {RR}}_t \end{aligned} \end{aligned}$$
(1)

Approach 2

$$\begin{aligned} \begin{aligned}&\sum _v{ \left[ {\text {Pr}}(Y^{a=0}=1 \vert V=v, P=t) \times {\text {RR}}_{s,v} \times {\text {Pr}}(V=v \vert P=t) \right] }\\&\quad =\sum _v{ \left[ {\text {Pr}}(Y^{a=0}=1 \vert V=v, P=t) \times \text {RR}_{t,v} \times {\text {Pr}}(V=v \vert P=t) \right] (\because {\text {RR}_{s,v}=\text {RR}_{t,v})}}\\&\quad =\sum _v{ \left[ {\text {Pr}}(Y^{a=0}=1 \vert V=v, P=t) \times \frac{{\text {Pr}}(Y^{a=1}=1 \vert V=v, P=t)}{{\text {Pr}}(Y^{a=0}=1 \vert V=v, P=t)} \times {\text {Pr}}(V=v \vert P=t) \right] }\\&\quad =\sum _v{ \left[ {\text {Pr}}(Y^{a=1}=1 \vert V=v, P=t) \times {\text {Pr}}(V=v \vert P=t) \right] }\\&\quad ={\text {Pr}}(Y^{a=1}=1 \vert P=t) \end{aligned} \end{aligned}$$
(2)

Approach 3

(3)

Approach 4

We are here assuming that Y is a binary variable, the proof generalizes readily to settings with continuous or time-to-event outcomes. In order to simplify the logic, we will further assume that the same set of baseline covariates V is sufficient to control both for confounding for A, and for differences between populations. In other words, we will assume conditional exchangeability in the study population ( ) and conditional effect homogeneity in distribution ( ). Before we begin, it is useful to note that \(\frac{{\text {Pr}}(A=a, V=v, P=s)}{{\text {Pr}}(A=a \vert P=s, V=v) \times {\text {Pr}}(P=s \vert V=v)} = {\text {Pr}}(V=v)\). This follows from sequential application of the definition of conditional probability.

(4)

Approach 5

The proof of approach 5 is closely related to that for approach 4. Westreich et al. [28] provide a full proof in the appendix.

Appendix 2

Here, we prove that if there is effect homogeneity in distribution between the groups \(W=1\) and \(W=0\), then the parameter \(\beta _2\) must be equal to zero in the regression model

$$\begin{aligned} {\text {logit\,Pr}} (Y = 1 \vert A,W, P=s) = \beta _0 + \beta _1 A + \beta _2 W \end{aligned}$$
(5)

Note here that we are discussing a regression model fit within the study population, and where the homogeneity assumption is between groups of baseline covariate W. In contrast to the rest of the paper, we are therefore using the homogeneity assumption rather than .

Additionally, we will make the following assumptions:

By consistency and exchangeability, the model can be rewritten as a structural model:

$$\begin{aligned} {\text {logit\,Pr}}(Y^a = 1 \vert W, P=s) = \beta _0 + \beta _1 a + \beta _2 W \end{aligned}$$
(6)

If \(W = 0\), we have:

$$\begin{aligned} {\text {logit\, Pr}}(Y^a = 1 \vert W=0, P=s) = \beta _0 + \beta _1 a \end{aligned}$$
(7)

If \(W = 1\), we have:

$$\begin{aligned} {\text {logit\, Pr}}(Y^a = 1 \vert W=1, P=s) = \beta _0 + \beta _1 a + \beta _2 \end{aligned}$$
(8)

By the assumption of effect homogeneity in distribution, we can set these equal:

$$\begin{aligned} \beta _0 + \beta _1 a = \beta _0 + \beta _1 a + \beta _2 \end{aligned}$$

Solving this for \(\beta _2\) we get \(\beta _2 = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huitfeldt, A., Swanson, S.A., Stensrud, M.J. et al. Effect heterogeneity and variable selection for standardizing causal effects to a target population. Eur J Epidemiol 34, 1119–1129 (2019). https://doi.org/10.1007/s10654-019-00571-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-019-00571-w

Keywords

Navigation