Skip to main content
Log in

Low concentrations of 25-hydroxyvitamin D and long-term prognosis of COPD: a prospective cohort study

  • PULMONARY DISEASE
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Role and importance of vitamin D deficiency in long-term prognosis of chronic obstructive pulmonary disease (COPD) still remains undetermined. We tested the hypothesis that among individuals with COPD, those with low concentrations of 25-hydroxyvitamin D have a poorer prognosis compared to those with normal concentrations. We studied 35,153 individuals from the general population aged 20–100 years with 25-hydroxyvitamin D measurements and spirometry, the Copenhagen City Heart Study [median follow-up 21 years (range 13 days–36 years)] and the Copenhagen General Population Study [7.1 years (3 days–13 years)]. Spirometric COPD (n = 5178; 15% of all) was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) < 0.70 in individuals without asthma and clinical COPD (n = 2033; 6%) as FEV1/FVC < 0.70 and FEV1 < 80% of predicted in ever-smokers aged > 40 years without asthma and with cumulative tobacco consumption ≥ 10 pack-years. In spirometric COPD, median age at death in years was 70.2 (95% confidence interval [CI] 64.4–71.2) for individuals with 25-hydroxyvitamin D < 12.5 nmol/L and 80.3 (74.4–83.4) for those with ≥ 50 nmol/L. In clinical COPD, corresponding values were 69.0 (63.3–70.9) and 76.2 (73.8–78.0). In spirometric COPD, multivariable adjusted hazard ratios for individuals with 25-hydroxyvitamin D < 12.5 nmol/L versus those with ≥ 50 nmol/L were 1.35 (95% CI 1.09–1.67) for all-cause mortality, 1.63 (1.00–2.64) for respiratory mortality, 1.14 (0.76–1.70) for cardiovascular mortality, 1.37 (0.90–2.06) for cancer mortality, and 1.61 (1.04–2.49) for other mortality. In clinical COPD, corresponding values were 1.39 (1.07–1.82), 1.57 (0.91–2.72), 0.88 (0.51–1.53), 1.63 (0.99–2.67), and 2.00 (1.12–3.56). Low concentrations of 25-hydroxyvitamin D were associated with an increased risk of death in individuals with COPD. No clear pattern of association could be observed for cause of death; however, there may be an increased risk of respiratory, cancer, and other mortality. It is likely that low concentrations of 25-hydroxyvitamin D is a marker of poor health in COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Afzal S, Lange P, Bojesen SE, Freiberg JJ, Nordestgaard BG. Plasma 25-hydroxyvitamin D, lung function and risk of chronic obstructive pulmonary disease. Thorax. 2014;69:24–31.

    Article  PubMed  Google Scholar 

  2. Black PN, Scragg R. Relationship between serum 25-hydroxyvitamin D and pulmonary function in the third national health and nutrition examination survey. Chest. 2005;128:3792–8.

    Article  PubMed  CAS  Google Scholar 

  3. Lange NE, Sparrow D, Vokonas P, Litonjua AA. Vitamin D deficiency, smoking, and lung function in the Normative Aging Study. Am J Respir Crit Care Med. 2012;186:616–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Persson LJ, Aanerud M, Hiemstra PS, Hardie JA, Bakke PS, Eagan TM. Chronic obstructive pulmonary disease is associated with low levels of vitamin D. PLoS ONE. 2012;7:e38934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Janssens W, Bouillon R, Claes B, Carremans C, Lehouck A, Buysschaert I, et al. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax. 2010;65:215–20.

    Article  PubMed  Google Scholar 

  6. Romme EA, Rutten EP, Smeenk FW, Spruit MA, Menheere PP, Wouters EF. Vitamin D status is associated with bone mineral density and functional exercise capacity in patients with chronic obstructive pulmonary disease. Ann Med. 2013;45:91–6.

    Article  PubMed  CAS  Google Scholar 

  7. Kunisaki KM, Niewoehner DE, Singh RJ, Connett JE. Vitamin D status and longitudinal lung function decline in the Lung Health Study. Eur Respir J. 2011;37:238–43.

    Article  PubMed  CAS  Google Scholar 

  8. Holmgaard DB, Mygind LH, Titlestad IL, Madsen H, Fruekilde PB, Pedersen SS, et al. Serum vitamin D in patients with chronic obstructive lung disease does not correlate with mortality-results from a 10-year prospective cohort study. PLoS ONE. 2013;8:e53670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kunisaki KM, Niewoehner DE, Connett JE. Vitamin D levels and risk of acute exacerbations of chronic obstructive pulmonary disease: a prospective cohort study. Am J Respir Crit Care Med. 2012;185:286–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lee HM, Liu M, Lee K, Luo Y, Wong ND. Does low vitamin D amplify the association of COPD with total and cardiovascular disease mortality? Clin Cardiol. 2014;37:473–8.

    Article  PubMed  Google Scholar 

  11. Persson LJ, Aanerud M, Hiemstra PS, Michelsen AE, Ueland T, Hardie JA, et al. Vitamin D, vitamin D binding protein, and longitudinal outcomes in COPD. PLoS ONE. 2015;10:e0121622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Quint JK, Donaldson GC, Wassef N, Hurst JR, Thomas M, Wedzicha JA. 25-hydroxyvitamin D deficiency, exacerbation frequency and human rhinovirus exacerbations in chronic obstructive pulmonary disease. BMC Pulm Med. 2012;12:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Moberg M, Vestbo J, Martinez G, Lange P, Ringbæk T. Prognostic value of C-reactive protein, leukocytes, and vitamin d in severe chronic obstructive pulmonary disease. ScientificWorldJournal. 2014;2014:140736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Puhan MA, Siebeling L, Frei A, Zoller M, Bischoff-Ferrari H, Ter RG. No association of 25-hydroxyvitamin D with exacerbations in primary care patients with COPD. Chest. 2014;145:37–43.

    Article  PubMed  CAS  Google Scholar 

  15. Lehouck A, Mathieu C, Carremans C, Baeke F, Verhaegen J, Van EJ, et al. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med. 2012;156:105–14.

    Article  PubMed  Google Scholar 

  16. Martineau AR, James WY, Hooper RL, Barnes NC, Jolliffe DA, Greiller CL, et al. Vitamin D3 supplementation in patients with chronic obstructive pulmonary disease (ViDiCO): a multicentre, double-blind, randomised controlled trial. Lancet Respir Med. 2015;3:120–30.

    Article  PubMed  CAS  Google Scholar 

  17. Afzal S, Brøndum-Jacobsen P, Bojesen SE, Nordestgaard BG. Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ. 2014;349:g6330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Vitamin D—Fact Sheet for Health Professionals. National Institutes of Health. Office of Dietary Supplements. https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/. Accessed 5 Mar 2018.

  19. Løkke A, Marott JL, Mortensen J, Nordestgaard BG, Dahl M, Lange P. New Danish reference values for spirometry. Clin Respir J. 2013;7:153–67.

    Article  PubMed  Google Scholar 

  20. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease (2017 Report). Global Initiative for Chronic Obstructive Lung Disease. http://goldcopd.org/gold-2017-global-strategy-diagnosis-management-prevention-copd/. Accessed 24 Oct 2017.

  21. Celli BR, Cote CG, Marin JM, Casanova C, de Montes OM, Mendez RA, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:1005–12.

    Article  PubMed  CAS  Google Scholar 

  22. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ. 2003;326:219.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bakke PS, Rönmark E, Eagan T, Pistelli F, Annesi-Maesano I, Maly M, et al. Recommendations for epidemiological studies on COPD. Eur Respir J. 2011;38:1261–77.

    Article  PubMed  CAS  Google Scholar 

  24. Seibel MJ, Cooper MS, Zhou H. Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol. 2013;1:59–70.

    Article  PubMed  CAS  Google Scholar 

  25. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377:1276–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Avenell A, Mak JC, O’Connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev. 2014;4:CD000227.

    Google Scholar 

  27. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  PubMed  CAS  Google Scholar 

  28. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–3.

    Article  PubMed  CAS  Google Scholar 

  29. Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ocke MC, Schrijver J, Obermann-de Boer GL, Bloemberg BP, Haenen GR, Kromhout D. Stability of blood (pro)vitamins during four years of storage at − 20 °C: consequences for epidemiologic research. J Clin Epidemiol. 1995;48:1077–85.

    Article  PubMed  CAS  Google Scholar 

  31. McCullough ML, Weinstein SJ, Freedman DM, Helzlsouer K, Flanders WD, Koenig K, et al. Correlates of circulating 25-hydroxyvitamin D: cohort consortium vitamin D pooling project of rarer cancers. Am J Epidemiol. 2010;172:21–35.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jorde R, Sneve M, Hutchinson M, Emaus N, Figenschau Y, Grimnes G. Tracking of serum 25-hydroxyvitamin D levels during 14 years in a population-based study and during 12 months in an intervention study. Am J Epidemiol. 2010;171:903–8.

    Article  PubMed  Google Scholar 

  33. Le GC, Cavalier E, Souberbielle JC, Gonzalez-Antuna A, Delvin E. Measurement of circulating 25-hydroxyvitamin D: a historical review. Pract Lab Med. 2015;2:1–14.

    Article  Google Scholar 

  34. Thienpont LM, Stepman HC, Vesper HW. Standardization of measurements of 25-hydroxyvitamin D3 and D2. Scand J Clin Lab Invest Suppl. 2012;243:41–9.

    PubMed  PubMed Central  Google Scholar 

  35. Wootton AM. Improving the measurement of 25-hydroxyvitamin D. Clin Biochem Rev. 2005;26:33–6.

    PubMed  PubMed Central  Google Scholar 

  36. Perez-Padilla R, Hallal PC, Vazquez-Garcia JC, Muino A, Maquez M, Lopez MV, et al. Impact of bronchodilator use on the prevalence of COPD in population-based samples. COPD. 2007;4:113–20.

    Article  PubMed  Google Scholar 

  37. Peat JK, Toelle BG, Marks GB, Mellis CM. Continuing the debate about measuring asthma in population studies. Thorax. 2001;56:406–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Toren K, Brisman J, Järvholm B. Asthma and asthma-like symptoms in adults assessed by questionnaires. A literature review. Chest. 1993;104:600–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The Lundbeck Foundation. The sponsor did not participate in the design and conduct of the study; collection, management, analysis, or interpretation of the data; or in preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

YÇ, SA, and BGN had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analyses. Study concept and design: GF, YÇ, SA, and BGN. Acquisition, analyses, or interpretation of data: GF, YÇ, SA, and BGN. Drafting of the manuscript: GF and YÇ. Critical revision of the manuscript for important intellectual content: GF, YÇ, SA, and BGN. Statistical analyses: GF, YÇ, and SA. Obtained funding: BGN. Administrative, technical, or material support: BGN. Study supervision: SA and BGN.

Corresponding author

Correspondence to Børge G. Nordestgaard.

Ethics declarations

Conflict of interest

YÇ reports personal fees from Boehringer Ingelheim and AstraZeneca outside the submitted work. GF, SA, and BGN have nothing to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Færk, G., Çolak, Y., Afzal, S. et al. Low concentrations of 25-hydroxyvitamin D and long-term prognosis of COPD: a prospective cohort study. Eur J Epidemiol 33, 567–577 (2018). https://doi.org/10.1007/s10654-018-0393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-018-0393-9

Keywords

Navigation