Advertisement

European Journal of Epidemiology

, Volume 32, Issue 2, pp 113–123 | Cite as

Plasma osteoprotegerin, its correlates, and risk of heart failure: a prospective cohort study

  • Romina di Giuseppe
  • Ronald Biemann
  • Janine Wirth
  • Juliane Menzel
  • Berend Isermann
  • Gabriele I. Stangl
  • Andreas Fritsche
  • Heiner Boeing
  • Matthias B. Schulze
  • Cornelia Weikert
CARDIOVASCULAR DISEASE

Abstract

Heart failure (HF) is a disabling condition involving complex vascular, neurohormonal and immune systems’ interactions. Osteoprotegerin (OPG), a bone-regulatory cytokine, has been suggested to play a key role in skeletal, vascular, and immune biology, with elevated levels observed in both experimental and clinical HF. In the present study we aimed to identify clinical OPG correlates and investigated whether elevated OPG, as a marker of HF vascular and immune activation, may interact with N-terminal pro-brain natriuretic peptide (NT-proBNP), a marker of HF neurohormonal activation, thus synergistically increasing HF risk. We used a case-cohort study, nested within the European Prospective Investigation into Cancer and Nutrition-Potsdam, comprising 2647 participants including 252 incident HF cases identified during a mean follow-up of 8.2 ± 1.6 years. In both men and women significant positive associations were observed between OPG and age, smoking, prevalent diabetes, C-reactive protein, sex hormone-binding globulin, and additionally prevalent coronary heart disease and uric acid in men only. In women, OPG was furthermore positively related to hypertension and fetuin-A. After multivariable adjustment each doubling of OPG was associated with a 3.01-fold increased HF risk (95 % CI 1.49–6.06) in men. A significant interaction was observed between OPG and NT-proBNP. In men, a combination of high levels of both OPG and NT-proBNP, compared to a combination of low levels, was associated with an approximately fivefold increased HF risk. In women, no associations were observed. These findings suggest that, in men, the activation of different immune, neurohormonal, and vascular pathophysiological pathways may confer increased HF risk.

Keywords

Myocardial failure Cytokine Determinants Additive interaction 

Notes

Acknowledgments

We thank the Human Study Centre (HSC) of the German Institute of Human Nutrition Potsdam-Rehbrücke, namely the trustee and the examination unit for the collection, the data hub for the processing, and the participants for the provision of the data, the biobank for the processing of the biological samples and the head of the HSC, Manuela Bergmann, for the contribution to the study design and leading the underlying processes of data generation.

Funding source

This work was supported by a grant from the Elsbeth Bonhoff Stiftung.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of the Medical Association of the State of Brandenburg and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

10654_2016_172_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. 1.
    Sharma R, Anker SD. Immune and neurohormonal pathways in chronic heart failure. Congest Heart Fail. 2002;8(1):23–48.CrossRefPubMedGoogle Scholar
  2. 2.
    Fildes JE, Shaw SM, Yonan N, Williams SG. The immune system and chronic heart failure: is the heart in control? J Am Coll Cardiol. 2009;53(12):1013–20. doi: 10.1016/j.jacc.2008.11.046.CrossRefPubMedGoogle Scholar
  3. 3.
    Damas JK, Gullestad L, Aukrust P. Cytokines as new treatment targets in chronic heart failure. Curr Control Trials Cardiovasc Med. 2001;2(6):271–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mori G, D’Amelio P, Faccio R, Brunetti G. The interplay between the bone and the immune system. Clin Dev Immunol. 2013;2013:720504. doi: 10.1155/2013/720504.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nybo M, Rasmussen LM. The capability of plasma osteoprotegerin as a predictor of cardiovascular disease: a systematic literature review. Eur J Endocrinol. 2008;159(5):603–8. doi: 10.1530/EJE-08-0554.CrossRefPubMedGoogle Scholar
  6. 6.
    Ueland T, Yndestad A, Oie E, Florholmen G, Halvorsen B, Froland SS, et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation. 2005;111(19):2461–8. doi: 10.1161/01.CIR.0000165119.62099.14.CrossRefPubMedGoogle Scholar
  7. 7.
    Ueland T, Jemtland R, Godang K, Kjekshus J, Hognestad A, Omland T, et al. Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction. J Am Coll Cardiol. 2004;44(10):1970–6. doi: 10.1016/j.jacc.2004.06.076.CrossRefPubMedGoogle Scholar
  8. 8.
    Omland T, Ueland T, Jansson AM, Persson A, Karlsson T, Smith C, et al. Circulating osteoprotegerin levels and long-term prognosis in patients with acute coronary syndromes. J Am Coll Cardiol. 2008;51(6):627–33. doi: 10.1016/j.jacc.2007.09.058.CrossRefPubMedGoogle Scholar
  9. 9.
    Ueland T, Dahl CP, Kjekshus J, Hulthe J, Bohm M, Mach F, et al. Osteoprotegerin predicts progression of chronic heart failure: results from CORONA. Circ Heart Fail. 2011;4(2):145–52. doi: 10.1161/CIRCHEARTFAILURE.110.957332.CrossRefPubMedGoogle Scholar
  10. 10.
    Ueland T, Aukrust P, Dahl CP, Husebye T, Solberg OG, Tonnessen T, et al. Osteoprotegerin levels predict mortality in patients with symptomatic aortic stenosis. J Intern Med. 2011;270(5):452–60. doi: 10.1111/j.1365-2796.2011.02393.x.CrossRefPubMedGoogle Scholar
  11. 11.
    Venuraju SM, Yerramasu A, Corder R, Lahiri A. Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol. 2010;55(19):2049–61. doi: 10.1016/j.jacc.2010.03.013.CrossRefPubMedGoogle Scholar
  12. 12.
    Lr P. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986;73:1–11.CrossRefGoogle Scholar
  13. 13.
    Boeing H, Wahrendorf J, Becker N. EPIC-Germany—a source for studies into diet and risk of chronic diseases. European Investigation into Cancer and Nutrition. Ann Nutr Metab. 1999;43(4):195–204.CrossRefPubMedGoogle Scholar
  14. 14.
    di Giuseppe R, Buijsse B, Hirche F, Wirth J, Arregui M, Westphal S, et al. Plasma fibroblast growth factor 23, parathyroid hormone, 25-hydroxyvitamin D3, and risk of heart failure: a prospective, case-cohort study. J Clin Endocrinol Metab. 2014;99(3):947–55. doi: 10.1210/jc.2013-2963.CrossRefPubMedGoogle Scholar
  15. 15.
    Wirth J, Buijsse B, di Giuseppe R, Fritsche A, Hense HW, Westphal S, et al. Relationship between N-terminal pro-brain natriuretic peptide, obesity and the risk of heart failure in middle-aged German adults. PLoS One. 2014;9(11):e113710. doi: 10.1371/journal.pone.0113710.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Swedberg K, Cleland J, Dargie H, Drexler H, Follath F, Komajda M, et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005). Rev Esp Cardiol. 2005;58(9):1062–92.CrossRefPubMedGoogle Scholar
  17. 17.
    Jacobs S, Kroger J, Floegel A, Boeing H, Drogan D, Pischon T, et al. Evaluation of various biomarkers as potential mediators of the association between coffee consumption and incident type 2 diabetes in the EPIC-Potsdam Study. Am J Clin Nutr. 2014;100(3):891–900. doi: 10.3945/ajcn.113.080317.CrossRefPubMedGoogle Scholar
  18. 18.
    Weikert C, Stefan N, Schulze MB, Pischon T, Berger K, Joost HG, et al. Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation. 2008;118(24):2555–62. doi: 10.1161/CIRCULATIONAHA.108.814418.CrossRefPubMedGoogle Scholar
  19. 19.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hopke PK, Liu C, Rubin DB. Multiple imputation for multivariate data with missing and below-threshold measurements: time-series concentrations of pollutants in the Arctic. Biometrics. 2001;57(1):22–33.CrossRefPubMedGoogle Scholar
  21. 21.
    di Giuseppe R, Kuhn T, Hirche F, Buijsse B, Dierkes J, Fritsche A, et al. Plasma fibroblast growth factor 23 and risk of cardiovascular disease: results from the EPIC-Germany case-cohort study. Eur J Epidemiol. 2015;30(2):131–41. doi: 10.1007/s10654-014-9982-4.CrossRefPubMedGoogle Scholar
  22. 22.
    de Mutsert R, Jager KJ, Zoccali C, Dekker FW. The effect of joint exposures: examining the presence of interaction. Kidney Int. 2009;75(7):677–81. doi: 10.1038/ki.2008.645.CrossRefPubMedGoogle Scholar
  23. 23.
    Lieb W, Gona P, Larson MG, Massaro JM, Lipinska I, Keaney JF Jr, et al. Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality. Arterioscler Thromb Vasc Biol. 2010;30(9):1849–54. doi: 10.1161/ATVBAHA.109.199661.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Abedin M, Omland T, Ueland T, Khera A, Aukrust P, Murphy SA, et al. Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study). Am J Cardiol. 2007;99(4):513–8. doi: 10.1016/j.amjcard.2006.08.064.CrossRefPubMedGoogle Scholar
  25. 25.
    Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation. 2004;109(18):2175–80. doi: 10.1161/01.CIR.0000127957.43874.BB.CrossRefPubMedGoogle Scholar
  26. 26.
    Gannage-Yared MH, Fares F, Semaan M, Khalife S, Jambart S. Circulating osteoprotegerin is correlated with lipid profile, insulin sensitivity, adiponectin and sex steroids in an ageing male population. Clin Endocrinol. 2006;64(6):652–8. doi: 10.1111/j.1365-2265.2006.02522.x.CrossRefGoogle Scholar
  27. 27.
    Pascual-Figal DA, Tornel PL, Nicolas F, Sanchez-Mas J, Martinez MD, Gracia MR, et al. Sex hormone-binding globulin: a new marker of disease severity and prognosis in men with chronic heart failure. Rev Esp Cardiol. 2009;62(12):1381–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang HH, Xiang GD. Changes of plasma concentration of osteoprotegerin and its association with endothelial dysfunction before and after hypouricemic therapy in patients with hyperuricemia. Mod Rheumatol. 2015;25(1):123–7. doi: 10.3109/14397595.2014.926852.CrossRefPubMedGoogle Scholar
  29. 29.
    Rasul S, Ilhan A, Reiter MH, Todoric J, Farhan S, Esterbauer H, et al. Levels of fetuin-A relate to the levels of bone turnover biomarkers in male and female patients with type 2 diabetes. Clin Endocrinol. 2012;76(4):499–505. doi: 10.1111/j.1365-2265.2011.04246.x.CrossRefGoogle Scholar
  30. 30.
    Roysland R, Masson S, Omland T, Milani V, Bjerre M, Flyvbjerg A, et al. Prognostic value of osteoprotegerin in chronic heart failure: the GISSI-HF trial. Am Heart J. 2010;160(2):286–93. doi: 10.1016/j.ahj.2010.05.015.CrossRefPubMedGoogle Scholar
  31. 31.
    Frioes F, Laszczynska O, Almeida PB, Silva N, Guimaraes JT, Omland T, et al. Prognostic Value of osteoprotegerin in acute heart failure. Can J Cardiol. 2015;31(10):1266–71. doi: 10.1016/j.cjca.2015.04.003.CrossRefPubMedGoogle Scholar
  32. 32.
    Aramburu-Bodas O, Garcia-Casado B, Salamanca-Bautista P, Guisado-Espartero ME, Arias-Jimenez JL, Barco-Sanchez A, et al. Relationship between osteoprotegerin and mortality in decompensated heart failure with preserved ejection fraction. J Cardiovasc Med. 2015;16(6):438–43. doi: 10.2459/JCM.0000000000000229.CrossRefGoogle Scholar
  33. 33.
    Bansal N, Zelnick L, Robinson-Cohen C, Hoofnagle AN, Ix JH, Lima JA, et al. Serum parathyroid hormone and 25-hydroxyvitamin D concentrations and risk of incident heart failure: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2014;3(6):e001278. doi: 10.1161/JAHA.114.001278.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lutsey PL, Michos ED, Misialek JR, Pankow JS, Loehr L, Selvin E, et al. Race and vitamin d binding protein gene polymorphisms modify the association of 25-hydroxyvitamin d and incident heart failure: the ARIC (Atherosclerosis Risk in Communities) Study. JACC Heart Fail. 2015;3(5):347–56. doi: 10.1016/j.jchf.2014.11.013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Witberg G, Ayers CR, Turer AT, Lev E, Kornowski R, de Lemos J, et al. Relation of adiponectin to all-cause mortality, cardiovascular mortality, and major adverse cardiovascular events (from the Dallas Heart Study). Am J Cardiol. 2016;117(4):574–9. doi: 10.1016/j.amjcard.2015.11.067.CrossRefPubMedGoogle Scholar
  36. 36.
    Jankowska EA, Ponikowski P. Sex hormone-binding globulin and heart failure: a passive carrier of steroid hormones or an active hormone itself? Rev Esp Cardiol. 2009;62(12):1353–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Kecebas M, Gullulu S, Sag S, Besli F, Acikgoz E, Sarandol E, et al. Serum fetuin-A levels in patients with systolic heart failure. Acta Cardiol. 2014;69(4):399–405. doi: 10.2143/AC.69.4.3036656.PubMedGoogle Scholar
  38. 38.
    Schoppet M, Hofbauer LC, Brinskelle-Schmal N, Varennes A, Goudable J, Richard M, et al. Serum level of the phosphaturic factor FGF23 is associated with abdominal aortic calcification in men: the STRAMBO study. J Clin Endocrinol Metab. 2012;97(4):E575–83. doi: 10.1210/jc.2011-2836.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang HL, Jin X. Relationship between serum adiponectin and osteoprotegerin levels and coronary heart disease severity. Genet Mol Res. 2015;14(3):11023–9. doi: 10.4238/2015.September.21.15.CrossRefPubMedGoogle Scholar
  40. 40.
    Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24(2):179–89. doi: 10.1681/ASN.2011121191.CrossRefPubMedGoogle Scholar
  41. 41.
    Michos ED, Vaidya D, Gapstur SM, Schreiner PJ, Golden SH, Wong ND, et al. Sex hormones, sex hormone binding globulin, and abdominal aortic calcification in women and men in the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2008;200(2):432–8. doi: 10.1016/j.atherosclerosis.2007.12.032.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Khundmiri SJ, Murray RD, Lederer E. PTH and vitamin D. Compr Physiol. 2016;6(2):561–601. doi: 10.1002/cphy.c140071.CrossRefPubMedGoogle Scholar
  43. 43.
    Jimbo R, Kawakami-Mori F, Mu S, Hirohama D, Majtan B, Shimizu Y, et al. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int. 2014;85(5):1103–11. doi: 10.1038/ki.2013.332.CrossRefPubMedGoogle Scholar
  44. 44.
    Fukumoto S. Vascular calcification—pathological mechanism and clinical application. Regulation of mineral metabolism and mineralization by FGF23. Clin Calcium. 2015;25(5):687–91.PubMedGoogle Scholar
  45. 45.
    Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117(22):2938–48. doi: 10.1161/CIRCULATIONAHA.107.743161.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Omland T, Drazner MH, Ueland T, Abedin M, Murphy SA, Aukrust P, et al. Plasma osteoprotegerin levels in the general population: relation to indices of left ventricular structure and function. Hypertension. 2007;49(6):1392–8. doi: 10.1161/HYPERTENSIONAHA.107.087742.CrossRefPubMedGoogle Scholar
  47. 47.
    Helske S, Kovanen PT, Lindstedt KA, Salmela K, Lommi J, Turto H, et al. Increased circulating concentrations and augmented myocardial extraction of osteoprotegerin in heart failure due to left ventricular pressure overload. Eur J Heart Fail. 2007;9(4):357–63. doi: 10.1016/j.ejheart.2006.10.015.CrossRefPubMedGoogle Scholar
  48. 48.
    Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137–46. doi: 10.1136/hrt.2003.025270.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ahmed A, Nanda NC, Weaver MT, Allman RM, DeLong JF. Clinical correlates of isolated left ventricular diastolic dysfunction among hospitalized older heart failure patients. Am J Geriatr Cardiol. 2003;12(2):82–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Romina di Giuseppe
    • 1
    • 2
  • Ronald Biemann
    • 3
  • Janine Wirth
    • 4
  • Juliane Menzel
    • 1
    • 5
    • 8
  • Berend Isermann
    • 3
  • Gabriele I. Stangl
    • 6
  • Andreas Fritsche
    • 7
  • Heiner Boeing
    • 4
  • Matthias B. Schulze
    • 5
    • 8
  • Cornelia Weikert
    • 1
    • 9
  1. 1.Research Group Cardiovascular EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrückeNuthetalGermany
  2. 2.Institute of EpidemiologyChristian-Albrechts University Kiel, University Hospital Schleswig-Holstein (UK-SH)KielGermany
  3. 3.Institute of Clinical Chemistry and PathobiochemistryOtto-von-Guericke University, MagdeburgMagdeburgGermany
  4. 4.Department of EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrückeNuthetalGermany
  5. 5.Department of Molecular EpidemiologyGerman Institute of Human Nutrition Potsdam-RehbrückeNuthetalGermany
  6. 6.Human Nutrition Group, Institute of Agricultural and Nutritional SciencesMartin Luther University Halle-Wittenberg, Halle (Saale)Halle (Saale)Germany
  7. 7.Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, Department of Internal MedicineUniversity of TübingenTübingenGermany
  8. 8.German Center for Diabetes Research (DZD)NeuherbergGermany
  9. 9.Department of Food SafetyFederal Institute of Risk AssessmentBerlinGermany

Personalised recommendations