Skip to main content
Log in

Serum calcium and the calcium-sensing receptor polymorphism rs17251221 in relation to coronary heart disease, type 2 diabetes, cancer and mortality: the Tromsø Study

  • GENETIC EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Serum calcium measured in 27,158 subjects in 1994 and the calcium-sensing receptor polymorphism rs17251221 genotyped in 9,404 subjects were related to cardiovascular risk factors, incident myocardial infarction (MI), type 2 diabetes (T2DM), cancer and death during follow-up until 2008–2010. In a Cox regression model with adjustment for age, gender, smoking and body mass index, subjects with serum calcium 2.50–2.60 mmol/L had a significantly increased risk of incident MI [n = 1,802, hazards ratio (HR) 1.40, 95 % confidence interval (CI) 1.18, 1.66] and T2DM (n = 705, HR 1.49, 95 % CI 1.15, 1.94) and a significantly reduced risk of cancer (n = 2,222, HR 0.73, 95 % CI 0.62, 0.86) as compared to subjects with serum calcium 2.20–2.29 mmol/L. For rs17251221 there was a mean difference in serum calcium of 0.05 mmol/L between major and minor homozygote genotypes. No consistent, significant relation between rs17251221 and risk factors or the major hard endpoints were found. The minor homozygote genotype (high serum calcium) had a significant twofold increased risk (HR 2.32, 95 % CI 1.24, 4.36) for prostate cancer, as compared to the major homozygote. This may be clinically important if confirmed in other cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CASR:

Calcium-sensing receptor

CI:

Confidence intervals

CVD:

Cardiovascular disease

HbA1c :

Glycated haemoglobin

HR:

Hazard ratio

LD:

Linkage disequilibrium

MI:

Myocardial infarction

PTH:

Parathyroid hormone

SNPs:

Single nucleotide polymorphisms

T2DM:

Type 2 diabetes

References

  1. Jorde R, Sundsfjord J, Fitzgerald P, Bønaa KH. Serum calcium and cardiovascular risk factors and diseases: the Tromsø study. Hypertension. 1999;34:484–90.

    Article  PubMed  CAS  Google Scholar 

  2. Kesteloot H, Geboers J. Calcium and blood pressure. Lancet. 1982;1:813–5.

    Article  PubMed  CAS  Google Scholar 

  3. Lind L, Jakobsson S, Lithell H, Wengle B, Ljunghall S. Relation of serum calcium concentration to metabolic risk factors for cardiovascular disease. BMJ. 1988;297:960–3.

    Article  PubMed  CAS  Google Scholar 

  4. Fraser A, Williams D, Lawlor DA. Associations of serum 25-hydroxyvitamin D, parathyroid hormone and calcium with cardiovascular risk factors: analysis of 3 NHANES cycles (2001–2006). PLoS ONE. 2010;5:e13882.

    Article  PubMed  Google Scholar 

  5. Sun G, Vasdev S, Martin GR, Gadag V, Zhang H. Altered calcium homeostasis is correlated with abnormalities of fasting serum glucose, insulin resistance, and beta-cell function in the Newfoundland population. Diabetes. 2005;54:3336–9.

    Article  PubMed  CAS  Google Scholar 

  6. Lind L, Skarfors E, Berglund L, Lithell H, Ljunghall S. Serum calcium: a new, independent, prospective risk factor for myocardial infarction in middle-aged men followed for 18 years. J Clin Epidemiol. 1997;50:967–73.

    Article  PubMed  CAS  Google Scholar 

  7. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008;156:556–63.

    Article  PubMed  CAS  Google Scholar 

  8. Larsson TE, Olauson H, Hagström E, Ingelsson E, Arnlöv J, Lind L, Sundström J. Conjoint effects of serum calcium and phosphate on risk of total, cardiovascular, and noncardiovascular mortality in the community. Arterioscler Thromb Vasc Biol. 2010;30:333–9.

    Article  PubMed  CAS  Google Scholar 

  9. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;158:2208–18.

    Article  Google Scholar 

  10. Dhingra R, Sullivan LM, Fox CS, Wang TJ, D’Agostino RB Sr, Gaziano JM, Vasan RS. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med. 2007;167:879–85.

    Article  PubMed  CAS  Google Scholar 

  11. Van Hemelrijck M, Hermans R, Michaelsson K, Melvin J, Garmo H, Hammar N, Jungner I, Walldius G, Holmberg L. Serum calcium and incident and fatal prostate cancer in the Swedish AMORIS study. Cancer Causes Control. 2012;23:1349–58.

    Article  PubMed  Google Scholar 

  12. Halthur C, Johansson AL, Almquist M, Malm J, Grönberg H, Manjer J, Dickman PW. Serum calcium and the risk of prostate cancer. Cancer Causes Control. 2009;20:1205–14.

    Article  PubMed  CAS  Google Scholar 

  13. Almquist M, Manjer J, Bondeson L, Bondeson AG. Serum calcium and breast cancer risk: results from a prospective cohort study of 7,847 women. Cancer Causes Control. 2007;18:595–602.

    Article  PubMed  Google Scholar 

  14. Sprague BL, Skinner HG, Trentham-Dietz A, Lee KE, Klein BE, Klein R. Serum calcium and breast cancer risk in a prospective cohort study. Ann Epidemiol. 2010;20:82–5.

    Article  PubMed  Google Scholar 

  15. Chung M, Balk EM, Brendel M, Ip S, Lau J, Lee J, Lichtenstein A, Patel K, Raman G, Tatsioni A, Terasawa T, Trikalinos TA. Vitamin D and calcium: a systematic review of health outcomes. Evid Rep Technol Assess. 2009;183:1–420.

    Google Scholar 

  16. Wang L, Manson JE, Sesso HD. Calcium intake and risk of cardiovascular disease: a review of prospective studies and randomized clinical trials. Am J Cardiovasc Drugs. 2012;12:105–16.

    Article  PubMed  CAS  Google Scholar 

  17. Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, Reid IR. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691. doi:10.1136/bmj.c3691.

    Article  PubMed  Google Scholar 

  18. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81:239–97.

    PubMed  CAS  Google Scholar 

  19. Kapur K, Johnson T, Beckmann ND, Sehmi J, Tanaka T, Kutalik Z, Styrkarsdottir U, Zhang W, Marek D, Gudbjartsson DF, Milaneschi Y, Holm H, Diiorio A, Waterworth D, Li Y, Singleton AB, Bjornsdottir US, Sigurdsson G, Hernandez DG, Desilva R, Elliott P, Eyjolfsson GI, Guralnik JM, Scott J, Thorsteinsdottir U, Bandinelli S, Chambers J, Stefansson K, Waeber G, Ferrucci L, Kooner JS, Mooser V, Vollenweider P, Beckmann JS, Bochud M, Bergmann S. Genome-wide meta-analysis for serum calcium identifies significantly associated SNPs near the calcium-sensing receptor (CASR) gene. PLoS Genet. 2010;6:e1001035.

    Article  PubMed  Google Scholar 

  20. O’Seaghdha CM, Yang Q, Glazer NL, Leak TS, Dehghan A, Smith AV, Kao WH, Lohman K, Hwang SJ, Johnson AD, Hofman A, Uitterlinden AG, Chen YD, GEFOS Consortium, Brown EM, Siscovick DS, Harris TB, Psaty BM, Coresh J, Gudnason V, Witteman JC, Liu YM, Kestenbaum BR, Fox CS, Köttgen A. Common variants in the calcium-sensing receptor gene are associated with total serum calcium levels. Hum Mol Genet. 2010;19:4296–303.

    Article  PubMed  Google Scholar 

  21. Jacobsen BK, Eggen AE, Mathiesen EB, Wilsgaard T, Njølstad I. Cohort profile: the Tromso Study. Int J Epidemiol. 2012;41:961–7.

    Article  PubMed  Google Scholar 

  22. Grimnes G, Emaus N, Joakimsen RM, Figenschau Y, Figenschau Y, Jenssen T, Njølstad I, Schirmer H, Jorde R. Baseline serum 25-hydroxyvitamin D concentrations in the Tromsø Study 1994–95 and risk of developing type 2 diabetes mellitus during 11 years of follow-up. Diabet Med. 2010;27:1107–15.

    Article  PubMed  CAS  Google Scholar 

  23. Jorde R, Schirmer H, Wilsgaard T, Joakimsen RM, Mathiesen EB, Njølstad I, Løchen ML, Figenschau Y, Berg JP, Svartberg J, Grimnes G. Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial infarction, diabetes, cancer and mortality. The Tromsø Study. PLoS One. 2012;7:e37295.

    Article  PubMed  CAS  Google Scholar 

  24. Kulathinal S, Karvanen J, Saarela O, Kuulasmaa K. Case-cohort design in practice—experiences from the MORGAM Project. Epidemiol Perspect Innov. 2007;4:15.

    Article  PubMed  Google Scholar 

  25. Mannsverk J, Wilsgaard T, Njølstad I, Hopstock LA, Løchen ML, Mathiesen EB, Thelle DS, Rasmussen K, Bønaa KH. Age and gender differences in incidence and case fatality trends for myocardial infarction: a 30-year follow-up. The Tromso Study. Eur J Prev Cardiol. 2012;19:927–34.

    Article  PubMed  Google Scholar 

  26. Joseph J, Svartberg J, Njølstad I, Schirmer H. Risk factors of type 2 diabetes in groups stratified according to metabolic syndrome. A 10-year follow-up of the Tromsø Study. Eur J Epidemiol. 2011;26:117–24.

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez S, Gaunt TR, Day IN. Hardy–Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169:505–14.

    Article  PubMed  Google Scholar 

  28. Lewontin RC. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics. 1964;49:49–67.

    PubMed  CAS  Google Scholar 

  29. Gaunt TR, Rodríguez S, Day IN. Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool ‘CubeX’. BMC Bioinform. 2007;8:428.

    Article  Google Scholar 

  30. Hagström E, Hellman P, Lundgren E, Lind L, Ärnlöv J. Serum calcium is independently associated with insulin sensitivity measured with euglycemic–hyperinsulinaemic clamp in a community-based cohort. Diabetologia. 2007;50:317–24.

    Article  PubMed  Google Scholar 

  31. Leifsson BG, Ahrén B. Serum calcium and survival in a large health screening program. J Clin Endocrinol Metab. 1996;81:2149–53.

    Article  PubMed  CAS  Google Scholar 

  32. Kesteloot H, Joossens JV. Relationship of dietary sodium, potassium, calcium, and magnesium with blood pressure. Belgian Interuniversity Research on Nutrition and Health. Hypertension. 1988;12:594–9.

    Article  PubMed  CAS  Google Scholar 

  33. Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE, Hu FB. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care. 2006;29:650–6.

    Article  PubMed  CAS  Google Scholar 

  34. Park Y, Leitzmann MF, Subar AF, Hollenbeck A, Schatzkin A. Dairy food, calcium, and risk of cancer in the NIH-AARP Diet and Health Study. Arch Intern Med. 2009;169:391–401.

    Article  PubMed  CAS  Google Scholar 

  35. Kaluza J, Orsini N, Levitan EB, Brzozowska A, Roszkowski W, Wolk A. Dietary calcium and magnesium intake and mortality: a prospective study of men. Am J Epidemiol. 2010;171:801–7.

    Article  PubMed  Google Scholar 

  36. Ward BK, Magno AL, Walsh JP, Ratajczak T. The role of the calcium-sensing receptor in human disease. Clin Biochem. 2012;45:943–53.

    Article  PubMed  CAS  Google Scholar 

  37. Jung J, Foroud TM, Eckert GJ, Flury-Wetherill L, Edenberg HJ, Xuei X, Zaidi SA, Pratt JH. Association of the calcium-sensing receptor gene with blood pressure and urinary calcium in African-Americans. J Clin Endocrinol Metab. 2009;94:1042–8.

    Article  PubMed  CAS  Google Scholar 

  38. Schwartz GG, John EM, Rowland G, Ingles SA. Prostate cancer in African-American men and polymorphism in the calcium-sensing receptor. Cancer Biol Ther. 2010;9:994–9.

    Article  PubMed  CAS  Google Scholar 

  39. Christensen SE, Nissen PH, Vestergaard P, Mosekilde L. Familial hypocalciuric hypercalcaemia: a review. Curr Opin Endocrinol Diabetes Obes. 2011;18:359–70.

    Article  PubMed  CAS  Google Scholar 

  40. Raue F, Pichl J, Dörr HG, Schnabel D, Heidemann P, Hammersen G, Jaursch-Hancke C, Santen R, Schöfl C, Wabitsch M, Haag C, Schulze E, Frank-Raue K. Activating mutations in the calcium-sensing receptor: genetic and clinical spectrum in 25 patients with autosomal dominant hypocalcaemia—a German survey. Clin Endocrinol. 2011;75:760–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the National Health Screening Service for their participation in collection of data in the fourth survey of the Tromsø Study. The present study was supported by grants from The North Norway Regional Health Authority, The Norwegian Diabetes Association, The Research Council of Norway and The University of Tromsø.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Jorde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorde, R., Schirmer, H., Njølstad, I. et al. Serum calcium and the calcium-sensing receptor polymorphism rs17251221 in relation to coronary heart disease, type 2 diabetes, cancer and mortality: the Tromsø Study. Eur J Epidemiol 28, 569–578 (2013). https://doi.org/10.1007/s10654-013-9822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-013-9822-y

Keywords

Navigation