European Journal of Epidemiology

, Volume 28, Issue 2, pp 189–197 | Cite as

EpiHealth: a large population-based cohort study for investigation of gene–lifestyle interactions in the pathogenesis of common diseases

  • Lars Lind
  • Sölve Elmståhl
  • Ebba Bergman
  • Martin Englund
  • Eva Lindberg
  • Karl Michaelsson
  • Peter M. Nilsson
  • Johan Sundström


The most common diseases affecting middle-aged and elderly subjects in industrialized countries are multigenetic and lifestyle related. Several attempts have been made to study interactions between genes and lifestyle factors, but most such studies lack the power to examine interactions between several genes and several lifestyle components. The primary objective of the EpiHealth cohort study is to provide a resource to study interactions between several genotypes and lifestyle factors in a large cohort (the aim is 300,000 individuals) derived from the Swedish population in the age range of 45–75 years regarding development of common degenerative disorders, such as cardiovascular diseases, cancer, dementia, joint pain, obstructive lung disease, depression, and osteoporotic fractures. The study consists of three parts. First, a collection of data on lifestyle factors by self-assessment using an internet-based questionnaire. Second, a visit to a test center where blood samples are collected and physiological parameters recorded. Third, the sample is followed for occurrence of outcomes using nationwide medical registers. This overview presents the study design and some baseline characteristics from the first year of data collection in the EpiHealth study.


Epidemiology Lifestyle Gene Prospective Cohort study 



We thank the Swedish Research Council for supporting the strategic research network Epidemiology for Health (EpiHealth) and thereby also the EpiHealth screening cohort.


  1. 1.
    Marras C, Goldman SM. Genetics meets environment: evaluating gene–environment interactions in neurologic diseases. Semin Neurol. 2011;31(5):553–61.PubMedCrossRefGoogle Scholar
  2. 2.
    Renz H, Autenrieth IB, Brandtzaeg P, et al. Gene–environment interaction in chronic disease: a European Science Foundation Forward Look. J Allergy Clin Immunol. 2011;128(6 Suppl):S27–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp Neurol. 2012;233(1):102–11.PubMedCrossRefGoogle Scholar
  4. 4.
    de Magalhaes JP, Wuttke D, Wood SH, Plank M, Vora C. Genome–environment interactions that modulate aging: powerful targets for drug discovery. Pharmacol Rev. 2012;64(1):88–101.PubMedCrossRefGoogle Scholar
  5. 5.
    Rigoli L, Briuglia S, Caimmi S, et al. Gene–environment interaction in childhood asthma. Int J Immunopathol Pharmacol. 2011;24(4 Suppl):41–7.PubMedGoogle Scholar
  6. 6.
    Dunn EC, Uddin M, Subramanian SV, Smoller JW, Galea S, Koenen KC. Research review: gene–environment interaction research in youth depression: a systematic review with recommendations for future research. J Child Psychol Psychiatry. 2011;52(12):1223–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Cornelis MC, Hu FB. Gene–environment interactions in the development of type 2 diabetes: recent progress and continuing challenges. Annu Rev Nutr. 2012;32:245–59.Google Scholar
  8. 8.
    Lee YC, Lai CQ, Ordovas JM, Parnell LD. A database of gene–environment interactions pertaining to blood lipid traits, cardiovascular disease and type 2 diabetes. J Data Mining Genomics Proteomics. 2011;2(1):106.Google Scholar
  9. 9.
    Collins FS. The case for a US prospective cohort study of genes and environment. Nature. 2004;429(6990):475–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Ollier W, Sprosen T, Peakman T. UK Biobank: from concept to reality. Pharmacogenomics. 2005;6(6):639–46.PubMedCrossRefGoogle Scholar
  11. 11.
    Gulcher J, Stefansson K. Population genomics: laying the groundwork for genetic disease modeling and targeting. Clin Chem Lab Med. 1998;36(8):523–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Nakamura Y. The biobank Japan project. Clin Adv Hematol Oncol. 2007;5(9):696–7.PubMedGoogle Scholar
  13. 13.
    Chen Z, Lee L, Chen J, et al. Cohort profile: the Kadoorie Study of chronic disease in China (KSCDC). Int J Epidemiol. 2005;34(6):1243–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Naess O, Sogaard AJ, Arnesen E, et al. Cohort profile: cohort of Norway (CONOR). Int J Epidemiol. 2008;37(3):481–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Stolk RP, Rosmalen JG, Postma DS, et al. Universal risk factors for multifactorial diseases: lifelines: a three-generation population-based study. Eur J Epidemiol. 2008;23(1):67–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Nilsen RM, Vollset SE, Gjessing HK, et al. Self-selection and bias in a large prospective pregnancy cohort in Norway. Paediatr Perinat Epidemiol. 2009;23(6):597–608.PubMedCrossRefGoogle Scholar
  17. 17.
    Golding J, Pembrey M, Jones R. ALSPAC: the Avon longitudinal study of parents and children. I. Study methodology. Paediatr Perinat Epidemiol. 2001;15(1):74–87.PubMedCrossRefGoogle Scholar
  18. 18.
    Landrigan PJ, Trasande L, Thorpe LE, et al. The national children’s study: a 21-year prospective study of 100,000 American children. Pediatrics. 2006;118(5):2173–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Keil T, Kulig M, Simpson A, et al. European birth cohort studies on asthma and atopic diseases: II. Comparison of outcomes and exposures: a GA2LEN initiative. Allergy. 2006;61(9):1104–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Inskip HM, Godfrey KM, Robinson SM, Law CM, Barker DJ, Cooper C. Cohort profile: the Southampton women’s survey. Int J Epidemiol. 2006;35(1):42–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Almqvist C, Adami HO, Franks PW, et al. Lifegene: a large prospective population-based study of global relevance. Eur J Epidemiol. 2011;26(1):67–77.PubMedCrossRefGoogle Scholar
  22. 22.
    Friberg L, Engdahl J, Frykman V, Svennberg E, Levin LA, Rosenqvist M. Population screening of 75- and 76-year-old men and women for silent atrial fibrillation (STROKESTOP). Europace. 2013;15(1):135–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Wiberg B, Lind L, Kilander L, Zethelius B, Sundelöf JE, Sundström J. Cognitive function and risk of stroke in elderly men. Neurology. 2010;74(5):379–85.PubMedCrossRefGoogle Scholar
  24. 24.
    Carlsson L, Lind L, Larsson A. Reference values for 27 clinical chemistry tests in 70-year-old males and females. Gerontology. 2010;56(3):259–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Davey Smith G, Ebrahim S, Lewis S, Hansell AL, Palmer LJ, Burton PR. Genetic epidemiology and public health: hope, hype, and future prospects. Lancet. 2005;366:1484–98.PubMedCrossRefGoogle Scholar
  26. 26.
    Riboli E, Kaaks R. The EPIC project: rationale and study design. European prospective investigation into cancer and nutrition. Int J Epidemiol. 1997;26(Suppl 1):S6–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Calltorp J, Adami HO, Aström H, Fryklund L, Rossner S, Trolle Y, Giesecke J. Country profile: Sweden. Lancet. 1996;347:587–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lars Lind
    • 1
  • Sölve Elmståhl
    • 2
  • Ebba Bergman
    • 1
  • Martin Englund
    • 3
  • Eva Lindberg
    • 1
  • Karl Michaelsson
    • 4
  • Peter M. Nilsson
    • 5
  • Johan Sundström
    • 1
  1. 1.Department of Medical SciencesUppsala UniversityUppsalaSweden
  2. 2.Division of Geriatric MedicineMalmö University HospitalMalmöSweden
  3. 3.Department of OrthopaedicsLund UniversityLundSweden
  4. 4.Department of Surgical SciencesUppsala UniversityUppsalaSweden
  5. 5.Department of Clinical SciencesSUS MalmöMalmöSweden

Personalised recommendations