Advertisement

Recreational physical activity and risk of head and neck cancer: a pooled analysis within the international head and neck cancer epidemiology (INHANCE) Consortium

  • Nicola Nicolotti
  • Shu-Chun Chuang
  • Gabriella Cadoni
  • Dario Arzani
  • Livia Petrelli
  • Cristina Bosetti
  • Hermann Brenner
  • Satoyo Hosono
  • Carlo La Vecchia
  • Keitaro Matsuo
  • Heiko Müller
  • Joshua Muscat
  • Gaetano Paludetti
  • Gualtiero Ricciardi
  • Paolo Boffetta
  • Mia Hashibe
  • Stefania Boccia
Cancer

Abstract

Increasing evidence suggests that physical activity could prevent cancer, but scanty data is available on head and neck cancer (HNC). The aim of our study is to clarify the effect of recreational physical activity (rPA) on HNC. We analyzed data from four case–control studies, including 2,289 HNC cases and 5,580 controls. rPA was classified as: none/low (reference group), moderate and high. We calculated summary Odds Ratios (ORs) by pooling study-specific ORs. Overall, moderate rPA was associated with 22% lower risk of HNC compared to those with none or very low rPA levels [OR = 0.78, 95% Confidence Interval (95% CI): 0.66, 0.91]. Moderate rPA is associated with reduced risk of oral (OR = 0.74, 95% CI: 0.56, 0.97) and pharyngeal cancer (OR = 0.67, 95% CI: 0.53, 0.85), as well as high rPA levels (OR = 0.53, 95% CI: 0.32, 0.88 for oral cavity, OR = 0.58, 95% CI: 0.38, 0.89 for pharynx). High rPA levels, however, is associated with higher risk of laryngeal cancer (OR = 1.73, 95% CI: 1.04, 2.88). Stratified analyses showed that such inverse association between moderate rPA and HNC was more evident among males (OR = 0.75, 95% CI: 0.62, 0.90), subjects ≥45 years (OR = 0.78, 95% CI: 0.66, 0.93), and ever smokers and ever drinkers (OR = 0.72, 95% CI: 0.59, 0.88). High rPA significantly reduces HNC risk among subject ≥45 years (OR = 0.66, 95% CI: 0.48, 0.91). Promoting rPA might be inversely associated with HNC.

Keywords

Head and neck neoplasms Physical activity Meta-analysis Pooled-analysis 

Abbreviations

CI

Confidence interval

HNC

Head and neck cancer

INHANCE

International head and neck cancer epidemiology

OR

Odds ratio

PA

Physical activity

PF

Preventable fraction

rPA

Recreational physical activity

Notes

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Parkin DM, Whelan SL, Ferlay J, et al. Cancer incidence in five continents, vol 8. Lyon: International Agency for Research on Cancer; 2005.Google Scholar
  2. 2.
    Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the international head and neck cancer epidemiology. J Natl Cancer Inst. 2007;99(10):777–89.PubMedCrossRefGoogle Scholar
  3. 3.
    Cherry TA. A theory of cancer. Med J Aus. 1922;1:425–38.Google Scholar
  4. 4.
    Siversten I, Dahlstrom AW. The relation of muscular activity and susceptibility to cancer. A preliminary report. Am J Cancer. 1921;6:365–78.Google Scholar
  5. 5.
    World Cancer Research Fund/American Institute for Cancer research. Food, nutrition, physical activity, and the prevention of cancer: a global prespective. Washington, DC: American Institute for Cancer research; 2007.Google Scholar
  6. 6.
    Tardon A, Lee WJ, Delgado-Rodriguez M, et al. Leisure-time physical activity and lung cancer: a meta-analysis. Cancer Causes Control. 2005;16(4):389–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Olsen CM, Bain CJ, Jordan SJ, et al. Recreational physical activity and epithelial ovarian cancer: a case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2007;16(11):2321–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Inoue M, Yamamoto S, Kurahashi N, et al. Daily total physical activity level and total cancer risk in men and women: results from a large-scale population-based cohort study in Japan. Am J Epidemiol. 2008;168(4):391–403.PubMedCrossRefGoogle Scholar
  9. 9.
    Martin SA, Pence BD, Woods JA. Exercise and respiratory tract viral infections. Exerc Sport Sci Rev. 2009;37(4):157–64.PubMedGoogle Scholar
  10. 10.
    Leitzmann MF, Koebnick C, Freedman ND, et al. Physical activity and head and neck cancer risk. Cancer Causes Control. 2008;19(10):1391–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Soll-Johanning H, Bach E. Occupational exposure to air pollution and cancer risk among Danish urban mail carriers. Int Arch Occup Environ Health. 2004;77(5):351–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Dosemeci M, Hayes RB, Vetter R, et al. Occupational physical activity, socioeconomic status, and risks of 15 cancer sites in Turkey. Cancer Causes Control. 1993;4(4):313–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Schatzkin A, Subar AF, Thompson FE, et al. Design and serendipity in establishing a large cohort with wide dietary intake distributions: the national institutes of health-american association of retired person’s diet and health study. Am J Epidemiol. 2001;154(12):1119–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Bosetti C, Gallus S, Trichopoulou A, Talamini R, Franceschi S, Negri E, et al. Influence of the Mediterranean diet on the risk of cancers of the upper aero digestive tract. Cancer Epidemiol Biomarkers Prev. 2003;12:1091–4.PubMedGoogle Scholar
  15. 15.
    De Feo E, Rowell J, Cadoni G, Nicolotti N, Arzani D, Giorgio A, Amore R, Paludetti G, Ricciardi G, Boccia S. A case-control study on the effect of apoliprotein E genotype on head and neck cancer risk. Cancer Epidemiol Biomarkers Prev. 2010;19(11):2839–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Olshan AF, Weissler MC, Watson MA, Bell DA. GSTM1, GSTT1, GSTP1, CYP1A1, and NAT1 polymorphisms, tobacco use, and the risk of head and neck cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:185–91.PubMedGoogle Scholar
  17. 17.
    Oze I, Matsuo K, Suzuki T, Kawase T, Watanabe M, Hiraki A, Ito H, Hosono S, Ozawa T, Hatooka S, Yatabe Y, Hasegawa Y, Shinoda M, Kiura K, Tajima K, Tanimoto M, Tanaka H. Impact of multiple alcohol dehydrogenase gene polymorphisms on risk of upper aero digestive tract cancers in a Japanese population. Cancer Epidemiol Biomarkers Prev. 2009;18(11):3097–102.PubMedCrossRefGoogle Scholar
  18. 18.
    Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Physical Activity Guidelines Advisory Committee. Physical activity guidelines advisory committee report, 2008. Washington, DC: US Department of Health and Human Services; 2008.Google Scholar
  20. 20.
    Egger M, Smith GD, Altman D. Systematic reviews in health care. Meta-analysis in context. London: BMJ Books; 2001.CrossRefGoogle Scholar
  21. 21.
    Rubin DB. Multiple imputation for nonresponse in surveys. NY: Wiley; 1987.CrossRefGoogle Scholar
  22. 22.
    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Klentrou P, Klentrou P, Cieslak T, MacNeil M, et al. Effect of moderate exercise on salivary immunoglobulin A and infection risk in humans. Eur J Appl Physiol. 2002;87(2):153–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Wolters Kluwer, Lippincott Williams and Wilkins; 2008.Google Scholar
  25. 25.
    Novas AM, Rowbottom DG, Jenkins DG. Tennis, incidence of URTI and salivary IgA. Int J Sports Med. 2003;24(3):223–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Inoue M, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S, Japan Public Health Center-based Prospective Study Group. Daily total physical activity level and total cancer risk in men and women: results from a large-scale population-based cohort study in Japan. Am J Epidemiol. 2008;4:391–403.CrossRefGoogle Scholar
  27. 27.
    Mazzoccoli G, De Cata A, Greco A, et al. Aging related changes of circadian rhythmicity of cytotoxic lymphocyte subpopulations. J Circadian Rhythm. 2010;8(1):6.CrossRefGoogle Scholar
  28. 28.
    Kacakci A, Aslan I, Toplan S, et al. Significance of the counteracting oxidative and antioxidative systems in the pathogenesis of laryngeal carcinoma. J Otolaryngol Head Neck Surg. 2009;38(2):172–7.PubMedGoogle Scholar
  29. 29.
    Wu HJ, Chi CW, Liu TY. Effects of pH on nicotine-induced DNA damage and oxidative stress. J Toxicol Environ Health A. 2005;68(17–18):1511–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Warnakulasuriya S, Parkkila S, Nagao T, et al. Demonstration of ethanol-induced protein adducts in oral leukoplakia (pre-cancer) and cancer. J Oral Pathol Med. 2008;37(3):157–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Blair SN, Cheng Y, Holder JS. Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc. 2001;33:S379–99.PubMedCrossRefGoogle Scholar
  32. 32.
    Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Ensley JF, Gutkind JS, Ensley JF, Jacobs JR, Lippman SM. Head and neck cancer. Emerging perspectives. San Diego: Elsevier; 2003.Google Scholar
  34. 34.
    Bosetti C, Franceschi S, Negri E, et al. Changing socioeconomic correlates for cancers of the upper digestive tract. Ann Oncol. 2001;12(3):327–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Gaudet MM, Olshan AF, Chuang SC, et al. Body mass index and risk of head and neck cancer in a pooled analysis of case-control studies in the international head and neck cancer epidemiology (INHANCE) consortium. Int J Epidemiol. 2010;39(4):1091–102.PubMedCrossRefGoogle Scholar
  36. 36.
    Heck JE, Berthiller J, Vaccarella S, et al. Sexual behaviours and the risk of head and neck cancers: a pooled analysis in the international head and neck cancer epidemiology (INHANCE) CONSORTIUM. Int J Epidemiol. 2010;39(1):166–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nicola Nicolotti
    • 1
  • Shu-Chun Chuang
    • 2
  • Gabriella Cadoni
    • 3
  • Dario Arzani
    • 1
  • Livia Petrelli
    • 3
  • Cristina Bosetti
    • 4
  • Hermann Brenner
    • 5
  • Satoyo Hosono
    • 6
  • Carlo La Vecchia
    • 4
    • 7
  • Keitaro Matsuo
    • 6
  • Heiko Müller
    • 5
  • Joshua Muscat
    • 8
  • Gaetano Paludetti
    • 3
  • Gualtiero Ricciardi
    • 1
  • Paolo Boffetta
    • 9
    • 10
  • Mia Hashibe
    • 11
  • Stefania Boccia
    • 1
    • 12
  1. 1.Genetic Epidemiology and Public Health Genomics Unit, Institute of HygieneUniversità Cattolica del Sacro CuoreRomeItaly
  2. 2.Imperial College LondonLondonUK
  3. 3.Institute of OtorhinolaryngologyUniversità Cattolica del Sacro CuoreRomeItaly
  4. 4.Istituto di Ricerche Farmacologiche Mario NegriUniversity of MilanMilanItaly
  5. 5.Division of Clinical Epidemiology and Aging ResearchGermany-Saarland Cancer Research CenterHeidelbergGermany
  6. 6.Division of Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
  7. 7.Department of Occupational HealthUniversity of MilanMilanItaly
  8. 8.Penn State College of MedicineHersheyUSA
  9. 9.The Tisch Cancer InstituteMount Sinai School of MedicineNew YorkUSA
  10. 10.International Prevention Research InstituteLyonFrance
  11. 11.Department of Family and Preventive MedicineUniversity of Utah School of MedicineSalt Lake CityUSA
  12. 12.San Raffaele PisanaRomeItaly

Personalised recommendations