Advertisement

Derivation and external validation of a simple prediction model for the diagnosis of type 2 Diabetes Mellitus in the Brazilian urban population

  • André Gustavo Pires de Sousa
  • Alexandre Costa Pereira
  • Guilherme Figueiredo Marquezine
  • Raimundo Marques do Nascimento-Neto
  • Silvia N. Freitas
  • Roney Luiz de C. Nicolato
  • George Luiz Lins Machado-Coelho
  • Sérgio L. Rodrigues
  • José G. Mill
  • José Eduardo Krieger
DIABETES

Abstract

A risk score model was developed based in a population of 1,224 individuals from the general population without known diabetes aging 35 years or more from an urban Brazilian population sample in order to select individuals who should be screened in subsequent testing and improve the efficacy of public health assurance. External validation was performed in a second, independent, population from a different city ascertained through a similar epidemiological protocol. The risk score was developed by multiple logistic regression and model performance and cutoff values were derived from a receiver operating characteristic curve. Model’s capacity of predicting fasting blood glucose levels was tested analyzing data from a 5-year follow-up protocol conducted in the general population. Items independently and significantly associated with diabetes were age, BMI and known hypertension. Sensitivity, specificity and proportion of further testing necessary for the best cutoff value were 75.9, 66.9 and 37.2%, respectively. External validation confirmed the model’s adequacy (AUC equal to 0.72). Finally, model score was also capable of predicting fasting blood glucose progression in non-diabetic individuals in a 5-year follow-up period. In conclusion, this simple diabetes risk score was able to identify individuals with an increased likelihood of having diabetes and it can be used to stratify subpopulations in which performing of subsequent tests is necessary and probably cost-effective.

Keywords

Type 2 diabetes Diabetes prediction model Risk score Diabetes Mellitus 

Abbreviations

ADA

American Diabetes Association

AUC

Area under curve

BMI

Body mass index

CVD

Cardiovascular diseases

DBP

Diastolic blood pressure

EPV

Events per variable

FPG

Fasting plasma glucose

HDL-c

High density lipoprotein cholesterol

IFG

Impaired fasting glycemia

IGT

Impaired glucose tolerance

LDL-c

Low density lipoprotein cholesterol

OGTT

Oral glucose tolerance test

PCOS

Polycystic ovarian syndrome

ROC curve

Receiver operating characteristic curve

SBP

Systolic blood pressure

T2DM

Type 2 Diabetes Mellitus

Notes

Acknowledgment

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo [grant number 07/54138-2]

References

  1. 1.
    Incidence of diabetes in the population aged 18–79 Years. Cent Dis Control Prev. 2006. http://www.cdc.go/diabetes/statistics/incidence. Accessed Aug 2006.
  2. 2.
    Malerbi DA, Franco LJ. Multicenter study of the prevalence of diabetes mellitus and impaired glucose tolerance in the urban Brazilian population aged 30–69 yr. The Brazilian Cooperative Group on the study of diabetes prevalence. Diabetes Care. 1992;15(11):1509–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Harris MI. Undiagnosed NIDDM: clinical and public health issues. Diabetes Care. 1993;16(4):642–52.PubMedGoogle Scholar
  4. 4.
    Ramachandran A, Snehalatha C, Vijay V, Wareham NJ, Colagiuri S. Derivation and validation of diabetes risk score for urban Asian Indians. Diabetes Res Clin Pract. 2005;70(1):63–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Glumer C, Carstensen B, Sandbaek A, Lauritzen T, Jorgensen T, Borch-Johnsen K. A Danish diabetes risk score for targeted screening: the Inter99 study. Diabetes Care. 2004;27(3):727–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation. 1994;90(1):583–612.PubMedGoogle Scholar
  7. 7.
    Bisi Molina Mdel C, Cunha Rde S, Herkenhoff LF, Mill JG. Hypertension and salt intake in an urban population. Rev Saude Publica. 2003;37(6):743–50.PubMedGoogle Scholar
  8. 8.
    Candido AP, Ferreira S, Lima AA, de Carvalho Nicolato RL, de Freitas SN, Brandao P, et al. Lipoprotein(a) as a risk factor associated with ischemic heart disease: Ouro Preto study. Atherosclerosis. 2007;191(2):454–9.PubMedCrossRefGoogle Scholar
  9. 9.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2008;31(Suppl 1):S55–60.CrossRefGoogle Scholar
  10. 10.
    Pesquisa por amostra de domicílios 2000: microdados. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística; 2001.Google Scholar
  11. 11.
    Alves-Silva J, da Silva Santos M, Guimaraes PE, Ferreira AC, Bandelt HJ, Pena SD, et al. The ancestry of Brazilian mtDNA lineages. Am J Hum Genet. 2000;67(2):444–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferreira RG, Moura MM, Engracia V, Pagotto RC, Alves FP, Camargo LM, et al. Ethnic admixture composition of two western Amazonian populations. Hum Biol. 2002;74(4):607–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Marquezine GF, Oliveira CM, Pereira AC, Krieger JE, Mill JG. Metabolic syndrome determinants in an urban population from Brazil: social class and gender-specific interaction. Int J Cardiol. 2007;129:259–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000;16(3):164–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med. 2002;136(8):575–81.PubMedGoogle Scholar
  17. 17.
    Tabaei BP, Herman WH. A multivariate logistic regression equation to screen for diabetes: development and validation. Diabetes Care. 2002;25(11):1999–2003.PubMedCrossRefGoogle Scholar
  18. 18.
    Spijkerman AM, Yuyun MF, Griffin SJ, Dekker JM, Nijpels G, Wareham NJ. The performance of a risk score as a screening test for undiagnosed hyperglycemia in ethnic minority groups: data from the 1999 health survey for England. Diabetes Care. 2004;27(1):116–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Steyerberg EW, Eijkemans MJ, Harrell FE Jr, Habbema JD. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med Decis Mak. 2001;21(1):45–56.CrossRefGoogle Scholar
  20. 20.
    Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA. 1997;277(6):488–94.PubMedCrossRefGoogle Scholar
  21. 21.
    Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Aekplakorn W, Bunnag P, Woodward M, Sritara P, Cheepudomwit S, Yamwong S, et al. A risk score for predicting incident diabetes in the Thai population. Diabetes Care. 2006;29(8):1872–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • André Gustavo Pires de Sousa
    • 1
    • 2
  • Alexandre Costa Pereira
    • 1
  • Guilherme Figueiredo Marquezine
    • 1
  • Raimundo Marques do Nascimento-Neto
    • 3
    • 4
  • Silvia N. Freitas
    • 5
  • Roney Luiz de C. Nicolato
    • 5
  • George Luiz Lins Machado-Coelho
    • 5
  • Sérgio L. Rodrigues
    • 6
  • José G. Mill
    • 6
  • José Eduardo Krieger
    • 1
  1. 1.Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão Paulo-SPBrazil
  2. 2.Clinical Medicine DepartmentFederal University of Rio Grande do NorteNatalBrazil
  3. 3.Arterial Hypertension InstituteBelo HorizonteBrazil
  4. 4.Federal University of Ouro Preto Medical SchoolOuro PretoBrazil
  5. 5.Pharmacy DepartmentFederal University of Ouro PretoOuro PretoBrazil
  6. 6.Department of Physiological SciencesFederal University of Espirito SantoVitoriaBrazil

Personalised recommendations