Health risks of potentially toxic trace elements in urban soils of Manaus city, Amazon, Brazil

Abstract

The city of Manaus is the biggest industrial city of the north Brazilian region, and a haphazard urbanization process characterizes it. The continuous urbanization and industrialization processes have increased the levels of trace elements in the urban environment and have posed great threat on human health. It is, then, essential to assess the pollution levels and the potential risks of the trace elements presence in urban soils. Therefore, the purpose of this study was to investigate the status of trace elements soils pollution and their human health risks to the population of Manaus City. Twenty-two soil samples were collected from the surface layer (0–20 cm), and the contents of Ba, Cr, Mn, Zn, Co, Ni, Cu, Cd and Pb were analyzed. Results showed the predominance of kaolinite, gibbsite and goethite as the main minerals of the clay fraction. The trace elements contents were affected by both natural sources and anthropic activities such as industrial operations and vehicular emissions. The soil contamination assessment by Enrichment Factor showed the existence of eight samples classified as considerably contaminated and two samples classified as highly contaminated. Geoaccumulation index also showed the existence of eight samples exhibiting considerable contamination and one sample showing high contamination. The non-carcinogenic health risk was considered low (HI < 1) to both children and adults. However, the carcinogenic risk of Cd and Pb was higher than the safety limits (CRtotal > 1 × 10–6), indicating that the long exposure to contaminated soils increases the probability of children’s cancer occurrence.

Graphic Abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The authors declare that the data and material have free access.

References

  1. Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland. New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238. https://doi.org/10.1007/s10661-007-9678-2.

    CAS  Article  Google Scholar 

  2. Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  3. Andrade, A. O. (2012). Migração para Manaus e seus reflexos socioambientais. Somanlu. https://doi.org/10.17563/somanlu.v12i2.443.

    Article  Google Scholar 

  4. Andrade, E., Miyazawa, M., Pavan, M. A., & De Oliveira, E. L. (2002). Effect of organic matter on manganese solubility. Brazilian Archives of Biology and Technology, 45(1), 17–20. https://doi.org/10.1590/S1516-89132002000100003.

    CAS  Article  Google Scholar 

  5. Aniceto, K. C. P., & Horbe, A. M. C. (2012). Solos urbanos formados pelo acúmulo de resíduos em Manaus, Amazonas. Brasil. Acta Amazonica, 42(1), 135–148. https://doi.org/10.1590/S0044-59672012000100016.

    CAS  Article  Google Scholar 

  6. Araújo, E. S. (2009). Desenvolvimento urbano local: O caso da Zona Franca de Manaus. Revista Brasileira de Gestão Urbana, 1(1), 33–42.

    Google Scholar 

  7. Bourotte, C. L. M., Sugauara, L. E., De Marchi, M. R. R., & Souto-Oliveira, C. E. (2019). Trace metals and pahs in topsoils of the university campus in the megacity of São Paulo, Brazil. Anais da Academia Brasileira de Ciencias, 91(3), 1–23. https://doi.org/10.1590/0001-3765201920180334.

    CAS  Article  Google Scholar 

  8. Cai, Q. Y., Mo, C. H., Li, H. Q., Lü, H., Zeng, Q. Y., Li, Y. W., & Wu, X. L. (2013). Heavy metal contamination of urban soils and dusts in Guangzhou. South China. Environmental Monitoring and Assessment, 185(2), 1095–1106. https://doi.org/10.1007/s10661-012-2617-x.

    CAS  Article  Google Scholar 

  9. Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., et al. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing. China. Chemosphere, 60(4), 542–551. https://doi.org/10.1016/j.chemosphere.2004.12.072.

    CAS  Article  Google Scholar 

  10. Christoforidis, A., & Stamatis, N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region. Greece. Geoderma, 151(3–4), 257–263. https://doi.org/10.1016/j.geoderma.2009.04.016.

    CAS  Article  Google Scholar 

  11. Ciesielski, T., Weuve, J., Bellinger, D. C., Schwartz, J., Lanphear, B., & Wright, R. O. (2012). Cadmium exposure and neurodevelopmental outcomes in U.S. children. Environmental Health Perspectives, 120(5), 758–763. https://doi.org/10.1289/ehp.1104152.

    CAS  Article  Google Scholar 

  12. CONAMA. (2009). Resolução CONAMA n.420. Conselho Nacional do Meio Ambiente.http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.

  13. Cornu, S., Lucas, Y., Ambrosi, J. P., & Desjardins, T. (1998). Transfer of dissolved Al, Fe and Si in two Amazonian forest environments in Brazil. European Journal of Soil Science, 49(3), 377–384. https://doi.org/10.1046/j.1365-2389.1998.4930377.x.

    CAS  Article  Google Scholar 

  14. Costi, H. T., Dall’Agnol, R., Pichavant, M., & Rämö, O. T. (2009). The peralkaline tin-mineralized madeira cryolite albite-rich granite of pitinga, amazonian craton, brazil: Petrography, mineralogy and crystallization processes. Canadian Mineralogist, 47(6), 1301–1327. https://doi.org/10.3749/canmin.47.6.1301.

    CAS  Article  Google Scholar 

  15. CPRM. (2010). Geodiversidade do estado do Amazonas. Programa Geologia do Brasil. Levantamento da Geodiversidade., 275.http://rigeo.cprm.gov.br/jspui/handle/doc/16624.

  16. Cunha, M., Pereira, V., Nardi, L., Bastos Neto, A., Vedana, L., & Formoso, L. L. (2012). REE distribution pattern in plants and soils from Pitinga Mine—Amazon. Brazil. Open Journal of Geology, 02(04), 253–259. https://doi.org/10.4236/ojg.2012.24025.

    CAS  Article  Google Scholar 

  17. De Oliveira, D. L., & Santana, G. P. (2010). Influência do aterro municipal de Manaus sobre as águas superficiais da circunvizinhança: Um enfoque ao estudo de metais pesados. Caminhos de Geografia, 11(34), 75–83.

    Google Scholar 

  18. Darko, G., Dodd, M., Nkansah, M. A., Aduse-poku, Y., Ansah, E., Wemegah, D., & Borquaye, L. S. (2017). Distribution and ecological risks of toxic metals in the topsoils in the Kumasi metropolis, Ghana. Cogent Environmental Science, 136, 1–15. https://doi.org/10.1080/23311843.2017.1354965.

    CAS  Article  Google Scholar 

  19. Dib, W. H., Cicarello, J. de F. G. M., Kummer, L., & Monego, M. L. C. Del. (2020). Geostatistical Assessment of Trace Metals in Urban Soils, Paraná, Brazil. Revista Ibero-Americana de Ciências Ambientais, 11(6). Retrieved Nov 2, 2020 from http://sustenere.co/index.php/rica/article/view/4229.

  20. Dubroeucq, D., & Volkoff, B. (1998). From oxisols to spodosols and histosols: Evolution of the soil mantles in the Rio Negro basin (Amazonia). CATENA, 32(3–4), 245–280. https://doi.org/10.1016/S0341-8162(98)00045-9.

    Article  Google Scholar 

  21. EPA (2007) Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. Environmental Protection. Doi: OSWER 9285.7–80

  22. EPA. (2016). Risk Assessment Regional Screening Levels (RSLs) ­ Generic Tables Regional Screening Levels (RSLs). Regional Screening Levels (RSLs), (November 2015), 2015–2016. Retrieved Dec 24, 2019 from https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables.

  23. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324. https://doi.org/10.1016/S0269-7491(00)00243-8.

    CAS  Article  Google Scholar 

  24. Falcão, N. P. D. S., & Da Silva, J. R. A. (2004). Características de adsorção de fósforo em alguns solos da Amazônia Central. Acta Amazonica, 34(3), 337–342. https://doi.org/10.1590/S0044-59672004000300001.

    Article  Google Scholar 

  25. da Ferreira, M. S., Fontes, M. P. F., Pacheco, A. A., Lima, H. N., & Santos, J. Z. L. (2020). Risk assessment of trace elements pollution of Manaus urban rivers. Science of the Total Environment, 709, 134471. https://doi.org/10.1016/j.scitotenv.2019.134471.

    CAS  Article  Google Scholar 

  26. Fontes, M. P. F., de Camargo, O., & Sposito, G. (2001). Electrochemistry of colloidal particles and its relationship with the mineralogy of highly weathered soils. Scientia Agricola, 58(1972), 627–646. https://doi.org/10.1590/S0103-90162001000300029.

    CAS  Article  Google Scholar 

  27. Ghrefat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam. Jordan. Environmental Monitoring and Assessment, 178(1–4), 95–109. https://doi.org/10.1007/s10661-010-1675-1.

    CAS  Article  Google Scholar 

  28. Gurgel, E., Melo, F., Do, M., Rocha, S., Silva, D., Átila, S., & Miranda, F. (2005). Antropic influence on the water of streams in the City of Manaus – Amazonas. Caminhos de Geografia, 5(16), 40–47.

    Google Scholar 

  29. Hallenbeck, W. H. (1984). Human health effects of exposure to cadmium. Experientia, 40(2), 136–142. https://doi.org/10.1007/BF01963576.

    CAS  Article  Google Scholar 

  30. Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica (Vol. 4). Retrieved March 27, 2019 from http://palaeo-electronica.orghttp//palaeo-electronica.org/2001_1/past/issue1_01.htm.

  31. Han, X., Lu, X., & Wu, Y. (2017). Health risks and contamination levels of heavy metals in dusts from parks and squares of an Industrial City in Semi-arid Area of China. International Journal of Environment Research and Public Health, 14(886), 1–12. https://doi.org/10.3390/ijerph14080886.

    CAS  Article  Google Scholar 

  32. Horbe, A. M. C., Horbe, M. A., & Suguio, K. (2004). Tropical spodosols in northeastern Amazonas State Brazil. Geoderma, 119(1–2), 55–68. https://doi.org/10.1016/S0016-7061(03)00233-7.

    CAS  Article  Google Scholar 

  33. Horbe, A. M. C., De Paiva, M. R. P., Motta, M. B., & Horbe, M. A. (2007). Mineralogia e geoquímica dos perfis sobre sedimentos neógenos e quaternários da bacia do Solimões na região de Coari - AM. Acta Amazonica, 37(1), 81–90. https://doi.org/10.1590/S0044-59672007000100009.

    CAS  Article  Google Scholar 

  34. IBGE. (2019). Censo Demográfico | IBGE. Instituto Brasileiro de Geografia e Estatística. Rio de Janeiro. Retrieved Feb 28, 2020 from https://www.ibge.gov.br/estatisticas/sociais/rendimento-despesa-e-consumo/9662-censo-demografico-2010.html?=&t=o-que-e.

  35. Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al- Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016.

    CAS  Article  Google Scholar 

  36. Keshavarzi, A., & Kumar, V. (2020). Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geology, Ecology, and Landscapes, 4(2), 87–103. https://doi.org/10.1080/24749508.2019.1587588.

    Article  Google Scholar 

  37. Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356(1–3), 45–61. https://doi.org/10.1016/j.scitotenv.2005.03.024.

    CAS  Article  Google Scholar 

  38. Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16(11–12), 1361–1368. https://doi.org/10.1016/S0883-2927(01)00045-2.

    CAS  Article  Google Scholar 

  39. Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., et al. (2013). Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192(1), 50–58. https://doi.org/10.1016/j.geoderma.2012.08.011.

    CAS  Article  Google Scholar 

  40. Lima, H. N., Mello, J. W. V., Schaefer, C. E. G. R., Ker, J. C., & Lima, A. M. N. (2006). Mineralogia e química de três solos de uma topossequencia da bacia sedimentar do alto solimões, Amazônia ocidental. Revista Brasileira de Ciencia do Solo, 30(1), 59–68. https://doi.org/10.1590/S0100-06832006000100007.

    CAS  Article  Google Scholar 

  41. Lima, H. N., Schaefer, C. E. R., Mello, J. W. V., Gilkes, R. J., & Ker, J. C. (2002). Pedogenesis and pre-Colombian land use of “Terra Preta Anthrosols” (“Indian black earth”) of Western Amazonia. Geoderma, 110(1–2), 1–17. https://doi.org/10.1016/S0016-7061(02)00141-6.

    CAS  Article  Google Scholar 

  42. Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96. https://doi.org/10.1016/j.scitotenv.2012.02.053.

    CAS  Article  Google Scholar 

  43. Luo, X. S., Xue, Y., Wang, Y. L., Cang, L., Xu, B., & Ding, J. (2015). Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 127, 152–157. https://doi.org/10.1016/j.chemosphere.2015.01.048.

    CAS  Article  Google Scholar 

  44. Lux, W. (1993). Long-term heavy metal and as pollution of soils, Hamburg. Germany. Applied Geochemistry, 8(2), 135–143. https://doi.org/10.1016/S0883-2927(09)80025-5.

    Article  Google Scholar 

  45. Madrid, L., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49(10), 1301–1308. https://doi.org/10.1016/S0045-6535(02)00530-1.

    CAS  Article  Google Scholar 

  46. Mafra, A. L., Miklós, A. A. W., Volkoff, B., & Melfi, A. J. (2002). Pedogênese numa seqüência latossolo-espodossolo na região do alto rio Negro, Amazonas. Revista Brasileira de Ciência do Solo, 26(2), 381–394. https://doi.org/10.1590/S0100-06832002000200012.

    CAS  Article  Google Scholar 

  47. Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. The Science of the Total Environment, 300, 229–243. https://doi.org/10.1016/S0048-9697(02)00273-5.

    CAS  Article  Google Scholar 

  48. Marques, J. D. D. O., Teixeira, W. G., Reis, A. M., Cruz Junior, O. F., Batista, S. M., & Afonso, M. A. C. B. (2010). Atributos químicos, físico-hídricos e mineralogia da fração argila em solos do Baixo Amazonas: Serra de parintins. Acta Amazonica, 40(1), 01–12. https://doi.org/10.1590/S0044-59672010000100001.

    CAS  Article  Google Scholar 

  49. Matta, G., & Gjyli, L. (2016). Mercury, lead and arsenic: Impact on environment and human health. Journal of Chemical and Pharmaceutical Sciences, 9(2), 718–725.

    CAS  Google Scholar 

  50. Melo, V. F., Singh, B., Schaefer, C. E. G. R., Novais, R. F., & Fontes, M. P. F. (2001). Chemical and mineralogical properties of kaolinite-rich Brazilian soils. Soil Science Society of America Journal, 65(4), 1324–1333. https://doi.org/10.2136/sssaj2001.6541324x.

    CAS  Article  Google Scholar 

  51. Meng, Y., Tang, C., Yu, J., Meng, S., & Zhang, W. (2020). Exposure to lead increases the risk of meningioma and brain cancer: A meta-analysis. Journal of Trace Elements in Medicine and Biology. https://doi.org/10.1016/j.jtemb.2020.126474.

    Article  Google Scholar 

  52. Mielke, H. W., Gonzales, C. R., Powell, E., Shah, A., & Mielke, P. W. (2002). Natural and anthropogenic processes that concentrate Mn in rural and urban environments of the lower Mississippi River Delta. Environmental Research, 90(2), 157–168. https://doi.org/10.1006/enrs.2002.4382.

    CAS  Article  Google Scholar 

  53. Mielke, H. W., Gonzales, C. R., Smith, M. K., & Mielke, P. W. (2000). Quantities and associations of lead, zinc, cadmium, manganese, chromium, nickel, vanadium, and copper in fresh Mississippi delta alluvium and New Orleans alluvial soils. Science of the Total Environment, 246(2–3), 249–259. https://doi.org/10.1016/S0048-9697(99)00462-3.

    CAS  Article  Google Scholar 

  54. Moreira, L. J. D., da Silva, E. B., Fontes, M. P. F., Liu, X., & Ma, L. Q. (2018). Speciation, bioaccessibility and potential risk of chromium in Amazon forest soils. Environmental Pollution, 239, 384–391. https://doi.org/10.1016/j.envpol.2018.04.025.

    CAS  Article  Google Scholar 

  55. Moreira, L. J. S. (2016). Caracterização Química, Física e Mineralógica e Teores Naturais de Metais Pesados em Solos do Estado do Amazonas - Brasil. Thesis. Universidade Federal de Viçosa. Retrieved from http://www.locus.ufv.br/handle/123456789/10356.

  56. Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101(3), 218–224. https://doi.org/10.1016/j.gexplo.2008.07.002.

    CAS  Article  Google Scholar 

  57. Mueller, G. (1979). Schwermetalle in den sedimenten des Rheins -Veranderungen seit 1971. UMSCH. WISSENSCH. TECHN., 79(24), 778–783.

    CAS  Google Scholar 

  58. Nascimento, C. W. A., Lima, L. H. V., Silva, F. L., Biondi, C. M., & Campos, M. C. C. (2018). Natural concentrations and reference values of heavy metals in sedimentary soils in the Brazilian Amazon. Environmental Monitoring and Assessment, 190, 1–9. https://doi.org/10.1007/s10661-018-6989-4.

    CAS  Article  Google Scholar 

  59. OEHHA. (2009). Technical Support Document for Cancer Potency Factors. Office of Environmental Health Hazard Assessment. Retrieved Dec 23, 2019 from https://oehha.ca.gov/air/crnr/technical-support-document-cancer-potency-factors-2009.

  60. Pan, S., Lin, L., Zeng, F., Zhang, J., Dong, G., Yang, B., et al. (2018). Effects of lead, cadmium, arsenic, and mercury co-exposure on children’s intelligence quotient in an industrialized area of southern China. Environmental Pollution, 235, 47–54. https://doi.org/10.1016/j.envpol.2017.12.044.

    CAS  Article  Google Scholar 

  61. Pons-Branchu, E., Ayrault, S., Roy-Barman, M., Bordier, L., Borst, W., Branchu, P., et al. (2015). Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems. Science of the Total Environment, 518–519, 86–96. https://doi.org/10.1016/j.scitotenv.2015.02.071.

    CAS  Article  Google Scholar 

  62. Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385. https://doi.org/10.1016/j.ecoenv.2015.06.019.

    CAS  Article  Google Scholar 

  63. Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157–184. https://doi.org/10.1002/jcb.26234.

    CAS  Article  Google Scholar 

  64. Rodríguez-Barranco, M., Lacasaña, M., Gil, F., Lorca, A., Alguacil, J., Rohlman, D. S., et al. (2014). Cadmium exposure and neuropsychological development in school children in southwestern Spain. Environmental Research, 134, 66–73. https://doi.org/10.1016/j.envres.2014.06.026.

    CAS  Article  Google Scholar 

  65. Santana, G. P., & de Barroncas, P. S. R. (2007). Estudo de metais pesados ( Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn ) na Bacia do Tarumã-Açu Manaus – ( AM ). Acta Amazonica, 37(1), 111–118. https://doi.org/10.1590/S0044-59672007000100013.

    CAS  Article  Google Scholar 

  66. Silva, J. R. R. E., Fernandes, A. R., & Perez, D. V. (2014). Phytoextraction of heavy metals from a landfill in the metropolitan region of Belém-Pará-Brazil. Revista de Ciências Agrarias - Amazon Journal of Agricultural and Environmental Sciences, 57(4), 429–438. https://doi.org/10.4322/rca.1525.

    Article  Google Scholar 

  67. Souza, J. J. L. L., Fontes, M. P. F., Gilkes, R., Costa, L. M., & Oliveira, T. S. (2018). Geochemical signature of Amazon tropical rainforest soils. Revista Brasileira de Ciência do Solo, 42, 1–18. https://doi.org/10.1590/18069657rbcs20170192.

    CAS  Article  Google Scholar 

  68. Sverdrup, H., & Warfvinge, P. (1988). Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model. Water, Air, and Soil Pollution, 38, 387–408. https://doi.org/10.1007/BF00280768.

    CAS  Article  Google Scholar 

  69. Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo. Embrapa (3rd ed.). Brasília: Embrapa Solos. https://www.agencia.cnptia.embrapa.br/Repositorio/Manual+de+Metodos_000fzvhotqk02wx5ok0q43a0ram31wtr.pdf.

  70. Tripathee, L., Kang, S., Rupakheti, D., Zhang, Q., Bajracharya, R. M., Sharma, C. M., et al. (2016). Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya. Nepal. Environmental Earth Sciences, 75(19), 1–12. https://doi.org/10.1007/s12665-016-6140-1.

    CAS  Article  Google Scholar 

  71. USEPA. (1989). Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). Office of Emergency and Remedial Response, 1(540/R/99/005), 1–291. Doi: EPA/540/1-89/002

  72. USEPA. (1996). METHOD 3052 - Microwave assisted acid digestion of sileceous and organically based matrices. U.S. Environmental Protection Agency. https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf.

  73. USEPA. (1998). METHOD 3051a - Microwave assisted acid digestion of sediments, sludges, soils and oils. United States Environmental Protection Agency.https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf.

  74. USEPA. (2002). Supplemental Guidance for Developing Soil Screening. U.S. Environmental Protection Agency, (December), 106.

  75. USEPA. (2004). Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessmentUSEPA, 2004. Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (H. US Epa, 1(540/R/99/005), 1–156. Doi: EPA/540/1-89/002.

  76. Wilcke, W., Müller, S., Kanchanakool, N., & Zech, W. (1998). Urban soil contamination in Bangkok: Heavy metal and aluminium partitioning in topsoils. Geoderma, 86(3–4), 211–228. https://doi.org/10.1016/S0016-7061(98)00045-7.

    CAS  Article  Google Scholar 

  77. Wu, J., Teng, Y., Lu, S., Wang, Y., & Jiao, X. (2014). Evaluation of soil contamination indices in a mining area of Jiangxi. China. PLoS ONE, 9(11), 1–14. https://doi.org/10.1371/journal.pone.0112917.

    CAS  Article  Google Scholar 

  78. Wu, T., Bi, X., Li, Z., Sun, G., Feng, X., Shang, L., et al. (2017). Contaminations, sources, and health risks of trace metal(Loid)s in street dust of a small city impacted by artisanal Zn smelting activities. International Journal of Environmental Research and Public Health, 14(9), 1–19. https://doi.org/10.3390/ijerph14090961.

    CAS  Article  Google Scholar 

  79. Xavier, B. T. de L. (2013). Mineralogia e Teores naturais de metais pesados em solos da Bacia Sedimentar Amazônica. Thesis. Universidade Federal de Viçosa. Retrieved from https://www.locus.ufv.br/bitstream/handle/123456789/1648/texto completo.pdf?sequence=1.

  80. Yang, Z., Ge, H., Lu, W., & Long, Y. (2015). Assessment of heavy metals contamination in near-surface dust. Polish Journal of Environmental Studies, 24(4), 1817–1829. https://doi.org/10.15244/pjoes/41805.

    CAS  Article  Google Scholar 

  81. Zhang, M., Lu, X., & Chen, H. (2015). Multi-element characterization and source identification of trace metal in road dust from an industrial city in semi-humid area of Northwest China. Journal of Radioanalytical and Nuclear Chemistry, 333, 637–646. https://doi.org/10.1007/s10967-014-3300-1.

    CAS  Article  Google Scholar 

  82. Zhang, Y., Liu, P., Wang, C., & Wu, Y. (2017). Human health risk assessment of cadmium via dietary intake by children in Jiangsu Province. China. Environmental Geochemistry and Health, 39(1), 29–41. https://doi.org/10.1007/s10653-016-9805-5.

    CAS  Article  Google Scholar 

  83. Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmospheric Environment, 44(27), 3239–3245. https://doi.org/10.1016/j.atmosenv.2010.06.002.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES (Brasil)—through the project Programa Nacional de Cooperação Acadêmica—PROCAD 2013—Finance Code 001

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES (Brasil)—through the project Programa Nacional de Cooperação Acadêmica—PROCAD 2013—Finance Code 001.

Author information

Affiliations

Authors

Contributions

Conception or design of the work: MSF, MPFF. Data collection: MSF, HNL. Data analysis and interpretation: MSF, MPFF, AAP. Drafting the article: MSF, MPFF, AAP, JCK, HNL. Critical revision of the article: MSF, MPFF, AAP, JCK, HNL. Final approval of the version to be published: MSF, MPFF, AAP, JCK, HNL.

Corresponding author

Correspondence to Matheus da Silva Ferreira.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M.d., Fontes, M.P.F., Pacheco, A.A. et al. Health risks of potentially toxic trace elements in urban soils of Manaus city, Amazon, Brazil. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-00834-0

Download citation

Keywords

  • Contamination
  • Enrichment factor
  • Pollution
  • Toxicity
  • Heavy metals
  • Park soils