Cadmium contamination in agricultural soils of Bangladesh and management by application of organic amendments: evaluation of field assessment and pot experiments

Abstract

In recent years, cadmium (Cd) contamination in agricultural soils and its subsequent transfer to crops is one of the high-priority environmental and public health issues of global concern, especially in densely populated developing countries like Bangladesh. However, no effective strategy has been introduced or implemented yet to manage Cd-contaminated soils in order to sustain agricultural production with no human health risks. In this study, agricultural soil samples were collected from 60 locations of 10 upazilas from Tangail district to assess the extent of soil Cd contamination. The Cd concentration ranged from 0.83 to 4.08 mg kg−1 with a mean of 2.17 mg kg−1 in topsoil (0–15 cm), and from 0.67 to 3.74 mg kg−1 with a mean of 2.10 mg kg−1 in subsoil (16–30 cm). The values of contamination factor (CF) indicated that all the sampling locations were found to be highly contaminated with Cd. Pot trials with the application of different doses of biochar and vermicompost in Cd-contaminated soil (0.8 mg kg−1 Cd) revealed that integrated application of biochar (5 t ha−1) and vermicompost (5 t ha−1) was the best treatment that significantly (p < 0.05) reduced plant Cd concentration (72%) and increased the biomass of experimental crop, Red amaranth (Amaranthus cruentus). This combined treatment also significantly reduced the uptake of Cr (37%) when co-contamination was present. The study suggests the application of biochar (5 t ha−1) in combination with vermicompost (5 t ha−1) to reduce human health risk and increase crop production when the soil is loamy sand in texture.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The datasets used in this study are available from the corresponding author on reasonable request.

References

  1. Adewole, M. B., & Igberaese, S. O. (2011). Growth, yield and sensory properties of organically produced Amaranthus bybridus Linn. In A. T. Salami & O. O. I. Orimoogunje (Eds.), Environmental research and challenges of sustainable development in Nigeria (pp. 454–465). Ile-Ife, Nigeria: Obafemi Awolowo University Press.

    Google Scholar 

  2. Adiloğlu, S., Bellitürk, K., Solmaz, Y., Zahmacıoğlu, A., Kocabaş, A., & Adiloğlu, A. (2017). Effect of the various doses of vermicompost implementation on some heavy metal contents (Cr, Co, Cd, Ni, Pb) of cucumber (Cucumis sativus L.). Eurasian. Journal of Forest Science, 5(1), 29–34.

    Google Scholar 

  3. Ahmad, I., Akhtar, M. J., Zahir, Z. A., & Mitter, B. (2015). Organic amendments: effects on cereals growth and cadmium remediation. International Journal of Environmental Science and Technology, 12(9), 2919–2928.

    CAS  Article  Google Scholar 

  4. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–23.

    CAS  Article  Google Scholar 

  5. Akinbile, C. O., Adefolaju, S., & Ajibade, F. O. (2016). Effect of organic and inorganic fertilizer on the growth and yield of Amaranthus curentus in Akure, Ondo state, Nigeria. 37th Annual Conference and Annual General Meeting, Minna-2016, Minna-Niger, Nigeria, pp. 337–343.

  6. Akter, A., Begum, S., Sheikh, M. S., Haq, M. E., Bahar, M. I., Miah, M. A., et al. (2016). Impact of temperature raising on crop production in Tangail, Bangladesh: A case study in Tangail district, Bangladesh. Asian-Australian Journal of Bioscience and Biotechnology, 1(3), 539–546.

    Google Scholar 

  7. Alam, M. N., Jahan, M. S., Ali, M. K., Ashraf, M. A., & Islam, M. K. (2007). Effect of vermicompost and chemical fertilizers on growth, yield and yield components of potato in barind soils of Bangladesh. Journal of Applied Sciences Research, 3(12), 1879–1888.

    CAS  Google Scholar 

  8. AlKhader, A. M. F. (2015). The impact of phosphorus fertilizers on heavy metals content of soils and vegetables grown on selected farms in Jordan. Agrotechnology, 5(1), 137.

    Article  Google Scholar 

  9. Andersson, H., Bergström, L., Ulén, B., Djodjic, F., & Kirchmann, H. (2015). The role of subsoil as a source or sink for phosphorus leaching. Journal of Environmental Quality, 44, 535–544.

    CAS  Article  Google Scholar 

  10. Angelova, V., Ivanova, R., Pevicharova, G., & Ivanov, K. (2010). Effect of organic amendments on heavy metals uptake by potato plants. 19th World congress of soil science, soil solutions for a changing world, Brisbane, Australia, Vol. 16.

  11. Arancon, N. Q., Edwards, C. A., Lee, S., & Byrne, R. (2006). Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, 42(1), S65–S69.

    CAS  Article  Google Scholar 

  12. Asmoay, A. S. A., Salman, S. A., El-Gohary, A. M., & Sabet, H. S. (2019). Evaluation of heavy metal mobility in contaminated soils between Abu Qurqas and Dyer Mawas Area, El Minya Governorate, Upper Egypt. Bulletin of the National Research Centre, 43, 88.

    Article  Google Scholar 

  13. Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., et al. (2010). Effect of fertilizer application on soil heavy metal contamination. Environmental Monitoring and Assessment, 160, 83–89.

    CAS  Article  Google Scholar 

  14. Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84, 7–14.

    CAS  Article  Google Scholar 

  15. Azarmi, R., Giglou, M. T., & Taleshmikail, R. D. (2009). Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. African Journal of Biotechnology, 7(14), 2397–2401.

    Google Scholar 

  16. Banglapedia. (2020) Tangail district. National Encyclopedia of Bangladesh, Asiatic Society of Bangladesh. Available http://en.banglapedia.org/index.php?title=Tangail_District. Accessed on 14 September 2019.

  17. BBS (Bangladesh Bureau of Statistics). (2012). Yearbook of Agricultural Statistics of Bangladesh (p. 143). Bangladesh Bureau of Statistics, Ministry of Planning: Government of the People’s Republic of Bangladesh, Dhaka, Bangladesh.

    Google Scholar 

  18. BBS (Bangladesh Bureau of Statistics). (2018). 2017 Statistical Yearbook Bangladesh. 37th edition. Bangladesh Bureau of Statistics, Statistics & Informatics Division (SID), Ministry of Planning, Government of the People’s Republic of Bangladesh, Dhaka, Bangladesh. Available http://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/b2db8758_8497_412c_a9ec_6bb299f8b3ab/S_Y_B2017.pdf. Accessed 20 September 2020.

  19. Bian, R. J., Joseph, S., Cui, L. Q., Pan, G. X., Li, L. Q., Liu, X. Y., et al. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128.

    CAS  Article  Google Scholar 

  20. Blum, W. E. H., Spiegel, H., & Wenzel, W. W. (1996). Bodenzustandsinventur, Konzeption, Durchführung, Bewertung, Empfehlungen Zur Vereinheitlichung der Vorgangsweise in sterreich. Bundesministeriumfür Land and Forstwirtschaft, Wien. 2nd edition, pp. 102.

  21. Branzini, A., & Zubillaga, M. S. (2012). Comparative use of soil organic and inorganic amendments in heavy metals stabilization. Applied and Environmental Soil Science, 2012, 721032. https://doi.org/10.1155/2012/721032.

    CAS  Article  Google Scholar 

  22. Cai, K., Yu, Y., Zhang, M., & Kim, K. (2019). Concentration, source, and total health risks of cadmium in multiple media in densely populated areas, China. International Journal of Environmental Research and Public Health, 16, 2269. https://doi.org/10.3390/ijerph16132269.

    CAS  Article  Google Scholar 

  23. Castaldi, P., Santona, L., & Melis, P. (2005). Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 60(3), 365–371.

    CAS  Article  Google Scholar 

  24. CCME (Canadian Council of Ministers of the Environment). (2003). Canadian environmental quality guidelines. National Guidelines and Standards Office, Canadian Council of Ministers of the Environment. Available http://ceqg-rcqe.ccme.ca/en/index.html. Accessed 20 September 2019.

  25. Ch’ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2014). Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal, 2014, 506356. https://doi.org/10.1155/2014/506356.

    CAS  Article  Google Scholar 

  26. Chaoui, H. I., Zibilske, L. M., & Ohno, T. (2003). Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry, 35(2), 295–302.

    CAS  Article  Google Scholar 

  27. Chen, L., Wang, G., Wu, S., Xia, Z., Cui, Z., Wang, C., et al. (2019). Heavy metals in agricultural soils of the Lihe river watershed, East China: Spatial distribution, ecological risk, and pollution source. International Journal of Environmental Research and Public Health, 16, 2094.

    CAS  Article  Google Scholar 

  28. Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305.

    Article  Google Scholar 

  29. Di, W. U., Yanfang, F. E. N. G., Lihong, X. U. E., Manqiang, L. I. U., Bei, Y. A. N. G., Feng, H. U., et al. (2019). Biochar combined with vermicompost increases crop production while reducing ammonia and nitrous oxide emissions from a paddy soil. Pedosphere, 29(1), 82–94.

    Article  Google Scholar 

  30. Dourado, M. N., Martins, P. F., Quecine, M. C., Piotto, F. A., Souza, L. A., Franco, M. R., et al. (2013). Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Annals of Applied Biology, 163(3), 494–507.

    CAS  Google Scholar 

  31. Egashira, K., Takenaka, J., Shuto, S., & Moslehuddin, A. Z. M. (2003). Phosphorus status of some paddy soils in Bangladesh. Soil Science and Plant Nutrition, 49(5), 751–755.

    CAS  Article  Google Scholar 

  32. Ennaji, W., Barakat, A., Baghdadi, M. E., & Rais, J. (2020). Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. Journal of Sedimentary Environments, 5, 307–320.

    Article  Google Scholar 

  33. Gadepalle, V. P., Ouki, S. K., & Hutchings, T. (2008). Remediation of copper and cadmium in contaminated soils using compost with inorganic amendments. Water Air & Soil Pollution, 196(1–4), 355–368.

    Google Scholar 

  34. Gambuś, F., & Wieczorek, J. (2012). Pollution of fertilizers with heavy metals. Ecological Chemistry and Engineering A, 19(4–5), 353–360.

    Google Scholar 

  35. Gayathri, V., & Anitha, D. (2018). Effect of different organic fertilizers on the growth of Amaranthus tricolor (L.). International Journal of Pharmacology and Phytochemical Research, 10(12), 363–366.

    Google Scholar 

  36. Goswami, L., Nath, A., Sutradhar, S., Bhattacharya, S. S., Kalamdhad, A., Vellingiri, K., et al. (2017). Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management, 200, 243–252.

    Article  Google Scholar 

  37. Guo, G., Zhang, D., & Wang, Y. (2019). Probabilistic human health risk assessment of heavy metal intake via vegetable consumption around Pb/Zn smelters in southwest China. International Journal of Environmental Research and Public Health, 16, 3267. https://doi.org/10.3390/ijerph16183267.

    CAS  Article  Google Scholar 

  38. Hadi, M. R. H. S., Darz, M. T., Ghandehari, Z., & Riazi, G. (2011). Effects of vermicompost and amino acids on the flower yield and essential oil production from Matricaria chamomile L. Journal of Medicinal Plants Research, 5(23), 5611–5617.

    Google Scholar 

  39. Hamid, Y., Tang, L., Wang, X., Hussain, B., Yaseen, M., Aziz, M. Z., et al. (2018). Immobilization of cadmium and lead in contaminated paddy field using inorganic and organic additives. Scientific Reports, 8, 17839. https://doi.org/10.1038/s41598-018-35881-8.

    CAS  Article  Google Scholar 

  40. Hamzah, Z., & Shuhaimi, S. N. A. (2017). Biochar: effects on crop growth. IOP Conference Series: Earth and Environmental Science, 215, 012011. https://doi.org/10.1088/1755-1315/215/1/012011.

    Article  Google Scholar 

  41. Herencia, J. F., Ruiz-Porras, J. C., Melero, S., Garcia-Galavis, P. A., Morillo, E., & Maqueda, C. (2007). Comparison between organic and mineral fertilization for soil fertility levels, crop management concentrations, and yield. Agronomy Journal, 99(4), 973–983.

    CAS  Article  Google Scholar 

  42. Houben, D., Laurent, E., & Philippe, S. (2013). Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57, 196–204.

    CAS  Article  Google Scholar 

  43. Huq, S. I., & Alam, M. D. (2005). A handbook on analyses of soil, plant and water (p. 246). Bangladesh: BACER-DU, University of Dhaka.

    Google Scholar 

  44. IARC (International Agency for Research on Cancer). (2011). Agents classified by the IARC monographs, International Agency for Research on Cance. In: Oxford Handbook of Occupational Health, OUP Oxford: Oxford, UK.

  45. Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Raknuzzaman, M. (2015a). Trace elements in different land use soils of Bangladesh and potential ecological risk. Environmental Monitoring and Assessment, 187, 587.

    Article  CAS  Google Scholar 

  46. Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Raknuzzaman, M. (2015b). The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicology and Environmental Safety, 122, 462–469.

    CAS  Article  Google Scholar 

  47. Islam, M. M., Karim, M. R., Zheng, X., & Li, X. (2018a). Heavy metal and metalloid pollution in soil, water and foods in Bangladesh: A critical review. International Journal of Environmental Research and Public Health, 15, 2825. https://doi.org/10.3390/ijerph15122825.

    CAS  Article  Google Scholar 

  48. Islam, M. S., Kormoker, T., Ali, M. M., & Proshad, R. (2018b). Ecological risk analysis of heavy metals toxicity from agricultural soils in the industrial areas of Tangail district, Bangladesh. SF Journal of Environmental and Earth Science, 1(2), 1022.

    Google Scholar 

  49. Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., et al. (2009). Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. Journal of Hazardous Materials, 164(2–3), 1386–1391.

    CAS  Article  Google Scholar 

  50. Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., & Memon, A. R. (2006). Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. Journal of Agronomy and Crop Science, 193, 218–228.

    Article  CAS  Google Scholar 

  51. JECFA (Joint FAO/WHO Expert Committee on Food Additives). (2003). Food additives and food contaminants. FAO procedural guidelines for the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Rome, February 2003.

  52. Jiang, T.-Y., Jiang, J., Xu, R.-K., & Li, Z. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89(3), 249–256.

    CAS  Article  Google Scholar 

  53. Jouquet, E. P., Bloquel, E., Doan, T. T., Ricoy, M., Orange, D., Rumpel, C., et al. (2011). Do compost and vermicompost improve macronutrient retention and plant growth in degraded tropical soils? Compost Science & Utilization, 19(1), 15–24.

    CAS  Article  Google Scholar 

  54. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Google Scholar 

  55. Kadam, P. M. (2016). Study of pH and electrical conductivity of soil in Deulgaon Raja Taluka, Maharashtra. International Journal for Research in Applied Science & Engineering Technology, 4(4), 399–402.

    Google Scholar 

  56. Karer, J., Anna, W., Franz, Z., Gerald, D., Mario, W., Petronela-Bianca, P., et al. (2015). Effects of biochars and compost mixtures and inorganic additives on immobilization of heavy metals in contaminated soils. Water, Air, & Soil Pollution, 226, 342.

    Article  CAS  Google Scholar 

  57. Kashem, M. A., & Singh, B. R. (1999). Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water, Air, & Soil Pollution, 115, 347–361.

    CAS  Article  Google Scholar 

  58. Kaur, I., Gupta, A., Singh, B. P., Sharma, S., & Kumar, A. (2019). Assessment of radon and potentially toxic metals in agricultural soils of Punjab, India. Microchemical Journal, 146, 444–454.

    CAS  Article  Google Scholar 

  59. Kormoker, T., Proshad, R., Islam, M. S., Tusher, T. R., Uddin, M., Khadka, S., et al. (2020). Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2020.1724271.

    Article  Google Scholar 

  60. Kumar, U., Mukta, M., & Mia, M. Y. (2018). Changes in soil properties of four agro-ecological zones of Tangail district in Bangladesh. Progressive Agriculture, 29(4), 284–294.

    Article  Google Scholar 

  61. Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., et al. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462.

    CAS  Article  Google Scholar 

  62. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    CAS  Article  Google Scholar 

  63. Li, Q., & Gao, Y. (2019). Remediation of Cd-, Pb- and Cu-contaminated agricultural soils by phosphate fertilization and applying biochar. Polish Journal of Environmental Studies, 28(4), 2697–2705.

    CAS  Article  Google Scholar 

  64. Liu, Y., Feng, L., Hu, H., Jiang, G., Cai, Z., & Deng, Y. (2012). Phosphorus release from low-grade rock phosphates by low molecular weight organic acids. Journal of Food, Agriculture & Environment, 10(1 part 2), 1001–1007.

    CAS  Google Scholar 

  65. Mamun, S. A., Arif, R. H., Parveen, Z., Aktar, M., & Islam, M. S. (2018). The urgency of studies on cadmium manifestation (Cd) in food chain. Journal of Environmental Science & Natural Resources, 11(1 & 2), 227–234.

    Google Scholar 

  66. Mamun, S. A., Chanson, G., Muliadi, B. E., Aktar, M., Lehto, N., et al. (2016). Municipal composts reduce the transfer of Cd from soil to vegetables. Environmental Pollution, 213, 8–15.

    Article  CAS  Google Scholar 

  67. Mamun, S. A., Lehto, N., Cavanagh, J., McDowell, R., Aktar, M., Benyas, E., et al. (2017). Organic amendments derived from varied source materials reduce Cd uptake by potatoes. Journal of Environmental Quality, 46, 836–844.

    Article  CAS  Google Scholar 

  68. Mar, S. S., & Okazaki, M. (2012). Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchemical Journal, 104, 17–21.

    CAS  Article  Google Scholar 

  69. McBeath, T. M., McLaughlin, M. J., Kirby, J. K., & Armstrong, R. D. (2012). The effect of soil water status on fertilizer, topsoil and subsoil phosphorus utilization by wheat. Plant and Soil, 358, 337–348.

    CAS  Article  Google Scholar 

  70. Meharg, A. A., Norton, G., Deacon, C., Williams, P., Adomako, E. E., Price, A., et al. (2013). Variation in rice cadmium related to human exposure. Environmental Science & Technology, 47(11), 5613–5618.

    CAS  Article  Google Scholar 

  71. Mensah, A. K., & Frimpong, K. A. (2018). Biochar and/or compost applications improve soil properties, growth, and yield of Maize grown in acidic rainforest and coastal Savannah soils in Ghana. International Journal of Agronomy, 2018, 6837404.

    Article  CAS  Google Scholar 

  72. Menzies, N. (2009). The science of phosphorus nutrition: Forms in the soil, plant uptake, and plant response. Australian Government Grains Research & Development Corporation. Available https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2009/02/the-science-of-phosphorus-nutrition-forms-in-the-soil-plant-uptake-and-plant-response. Accessed 20 September 2019.

  73. Miah, M. A., Uddin, N., Hoque, M. H., Haq, M. E., & Biswas, A. K. (2016). Physicochemical properties of soil at Habla union of Basail upazila in Tangail. Asian Journal of Medical and Biological Research, 2(4), 664–671.

    Article  Google Scholar 

  74. Mo, L., Zhou, Y., Gopalakrishnana, G., & Li, X. (2020). Spatial distribution and risk assessment of toxic metals in agricultural soils from endemic nasopharyngeal carcinoma region in South China. Open Geosciences, 12, 568–579.

    Article  Google Scholar 

  75. Moghadam, A. R. L., Ardebili, Z. O., & Saidi, F. (2012). Vermicompost induced changes in growth and development of Lilium Asiatic hybrid var Navona. African Journal of Agricultural Research, 7(17), 2609–2621.

    Google Scholar 

  76. Mohawesh, O., Coolong, T., Aliedeh, M., & Qaraleh, S. (2018). Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment Bulgarian. Journal of Agricultural Science, 24(6), 1012–1019.

    Google Scholar 

  77. MPSSWRD (Master Plan Study on Small Scale Water Resources Development). 2005. Annex 16: Master plan study on small scale water resources development for poverty alleviation through effective use of surface water in greater Mymensingh. Japan International Cooperation Agency (JICA) and Ministry of Local Government, Bangladesh. Available https://openjicareport.jica.go.jp/pdf/11814605_14.pdf. Accessed 20 September 2019.

  78. Murray, H., Pinchin, T. A., & Macfie, S. M. (2011). Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. Journal of Soils and Sediments, 11(5), 815–829.

    CAS  Article  Google Scholar 

  79. MVROM (Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer). (2000). Dutch target and intervention values, 2000. ANNEXES Circular on target values and intervention values for soil remediation. Ministry of Housing, Netherlands. Ministry of Housing, Spatial Planning and Environment, National Institute for Public Health and Environmental Protection (RIVM, Report numbers 725201001 to 725201008 inclusive, Report numbers 715810004, 715810008 to 715810010 inclusive, Report numbers 711701003 to 711701005 inclusive). Available https://esdat.net/Environmental%20Standards/Dutch/annexS_I2000Dutch%20Environmental%20Standards.pdf. Accessed 20 September 2019.

  80. Naeem, M., Iqbal, J., & Bakhsh, M. A. A. H. A. (2006). Comparative study of inorganic fertilizers and organic manures on yield and yield components of mung bean (Vigna radiate L.). Journal of Agriculture & Social Sciences, 2(4), 227–229.

    Google Scholar 

  81. Naser, H. M., Shil, N. C., Mahmud, N. U., Rashid, M. H., & Hossain, K. M. (2009). Lead, cadmium and nickel contents of vegetables grown in industrially polluted and non-polluted areas of Bangladesh. Bangladesh Journal of Agricultural Research, 34(4), 545–554.

    Article  Google Scholar 

  82. Ngo, P. T., Rumpel, C., Ngo, Q. A., Alexis, M., Vargas, G. V., de la Luz Mora Gil, M., , et al. (2013). Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource Technology, 148, 401–407.

    CAS  Article  Google Scholar 

  83. Oke, O. L. (1980). Amaranth in Nigeria. In: Proceedings of the Second Amaranth Conference, Rodale Press Emmaus. PA, pp. 22.

  84. Oosterhuis F. H., Brouwer, F. M., & Wijnants, H. J. (2000). A possible EU wide charge on cadmium in phosphate fertilizers: Economic and environmental implications. Final report to the European Commission, Report to the European Commission, The Netherlands. pp. 10–15

  85. Oshunsanya, S. O. (2018). Introductory chapter: Relevance of soil pH to agriculture. In: Oshunsanya, S. O. (Ed.) Soil pH for Nutrient Availability and Crop Performance. IntechOpen. https://doi.org/10.5772/intechopen.82551. Available https://www.intechopen.com/books/soil-ph-for-nutrient-availability-and-crop-performance/introductory-chapter-relevance-of-soil-ph-to-agriculture

  86. Piash, M. I., Hossain, M. F., & Parveen, Z. (2019). Effect of biochar and fertilizer application on the growth and nutrient accumulation of rice and vegetable in two contrast soils. Acta Scientific Agriculture, 3(2), 74–83.

    Google Scholar 

  87. Plaza, C., Hernandez, D., Fernandez, J. M., & Polo, A. (2006). Long-term effects of amendment with liquid swine manure on proton binding behavior of soil humic substances. Chemosphere, 65, 1321–1329.

    CAS  Article  Google Scholar 

  88. Pramanik, P. (2010). Changes in microbial properties and nutrient dynamics in bagasse and coir during vermicomposting: Quantification of fungal biomass through ergosterol estimation in vermicompost. Waste Management, 30, 787–791.

    CAS  Article  Google Scholar 

  89. Pusz, A. (2007). Influence of brown coal on limit of phytotoxicity of soils contaminated with heavy metals. Journal of Hazardous Materials, 149(3), 590–597.

    CAS  Article  Google Scholar 

  90. Rahman, M., & Mian, M. M. (2016). Effect of soil physico-chemical properties on agriculture: A study in Tangail district, Bangladesh. Journal of Agriculture and Ecology Research, 5(2), 1–9.

    Article  Google Scholar 

  91. Rahman, M. M., Nasrin, M. S., Uddin, M. A., Rahman, K. M., & Shamsunnahar, M. (2012). Physico-chemical properties of some soils of Madhupur upazila under Tangail district. Journal of Agroforestry for Environment, 6(1), 89–93.

    Google Scholar 

  92. RDA (Recommended Dietary Allowances). (1989). National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances (RDA). National Academies Press (US), Washington DC, USA.

  93. Roberts, T. L., & Johnston, A. E. (2015). Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling, 105(B), 275–281.

    Article  Google Scholar 

  94. Sahito, O. M., Kazi, T. G., Afridi, H. I., Baig, J. A., Talpur, F. N., Baloch, S., et al. (2016). Assessment of toxic metal uptake by different vegetables grown on soils amended with poultry waste: Risk assessment. Water, Air, & Soil Pollution, 227, 423.

    Article  CAS  Google Scholar 

  95. Sanni, K. O., & Ewulo, B. S. (2015). Effects of phosphorus and organic fertilizers on the yield and proximate nutrient composition of lettuce (Lectuca sativa) in southwestern Nigeria. International Journal of Horticulture, 5(1), 1–7.

    Google Scholar 

  96. Shaheen, N., Irfan, N., Khan, I. N., Islam, S., Islam, M., & Ahmed, M. (2016). Presence of heavy metals in fruits and vegetables: health risk implications in Bangladesh. Chemosphere, 152, 431–438.

    CAS  Article  Google Scholar 

  97. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environmental International, 31(5), 739–753.

    CAS  Article  Google Scholar 

  98. Sheel, P. R., Chowdhury, M. A. H., Ali, M., & Mahmud, M. A. (2015). Physico-chemical characterization of some selected soil series of Mymensingh and Jamalpur districts of Bangladesh. Journal of the Bangladesh Agricultural University, 13(2), 197–206.

    Article  Google Scholar 

  99. Shirkhodaei, M., Darzi, M. T., & Hadi, M. H. S. (2014). Influence of vermicompost and biostimulant on the growth and biomass of coriander (Coriander sativum L.). International Journal of Advanced Biological and Biomedical Research, 2(3), 706–714.

    Google Scholar 

  100. Shukla, S., Bhargava, A., Chatterjee, A., Srivastava, A., & Singh, S. P. (2006). Genotypic variability in vegetable amaranth (Amaranthus tricolor L) for foliage yield and its contributing traits over successive cuttings and years. Euphytica, 151, 103–110.

    CAS  Article  Google Scholar 

  101. Simmler, M., Ciadamidaro, L., Schulin, R., Madejón, P., Reiser, R., Clucas, L., et al. (2013). Lignite reduces the solubility and plant uptake of cadmium in pasturelands. Environmental Science & Technology, 47, 4497–4504.

    CAS  Article  Google Scholar 

  102. Singh, R., Sharma, R. R., Kumar, S., Gupta, R. K., & Patil, R. T. (2008). Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Bioresource Technology, 99(17), 8507–8511.

    CAS  Article  Google Scholar 

  103. Situmeang, Y. P., Suarta, M., Irianto, I. K., & Andriani, A. A. S. P. R. (2018). Biochar bamboo application on growth and yield of Red amaranth (Amaranthus tricolor L.). IOP Conference Series Materials Science and Engineering. https://doi.org/10.1088/1757-899X/434/1/012231.

    Article  Google Scholar 

  104. Soltangheisi, A., Rodrigues, M., Coelho, M. J. A., Gasperini, A. M., Sartor, L. R., & Pavinato, P. S. (2018). Changes in soil phosphorus lability promoted by phosphate sources and cover crops. Soil and Tillage Research, 179, 20–28.

    Article  Google Scholar 

  105. Song, X., Liu, M., Wu, D., Griffiths, B. S., Jiao, J., Li, H., et al. (2015). Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology, 89, 25–34.

    Article  Google Scholar 

  106. Sultana, M. S., Rana, S., Yamazaki, S., Aono, T., & Yoshida, S. (2017). Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cogent Environmental Science, 3(1), 1291107. https://doi.org/10.1080/23311843.2017.1291107.

    CAS  Article  Google Scholar 

  107. Taylor, M. D. (1997). Accumulation of cadmium derived from fertilizers in New Zealand soils. Science of The Total Environment, 208, 123–126.

    CAS  Article  Google Scholar 

  108. Taylor, M., Gibb, R., Willoughby, J., Hewitt, A., & Arnold, G. (2007). Soil maps of cadmium in New Zealand. Wellington, New Zealand: Ministry of Agriculture and Forestry.

    Google Scholar 

  109. Tusher, T. R., Piash, A. S., Latif, M. A., Kabir, M. H., & Rana, M. M. (2017). Soil quality and heavy metal concentrations in agricultural lands around dyeing, glass and textile industries in Tangail district of Bangladesh. Journal of Environmental Science & Natural Resources, 10(2), 109–116.

    Article  Google Scholar 

  110. USEPA (U.S. Environmental Protection Agency). (1989). Guidance Manual for Assessing Human Health Risks from Chemically Contaminated, Fish and Shellfish. U.S. Environmental Protection Agency (USEPA), EPA-503/8–89–002, Washington DC, USA

  111. USEPA (U.S. Environmental Protection Agency). (2006). USEPA Region III Risk-Based Concentration Table: Technical Background Information. Washington DC, USA: United States Environmental Protection Agency.

    Google Scholar 

  112. USEPA (U.S. Environmental Protection Agency). (2016). Regional screening levels (RSLs) - Generic tables: Summary table. United States Environmental Protection Agency (USEPA), Washington DC, USA. Available http://19january2017snapshot.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016_.html. Accessed 20 September 2019.

  113. van de Wiel, C. C., van der Linden, C. G., & Scholten, O. E. (2016). Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica, 207(1), 1–22.

    Article  Google Scholar 

  114. Wang, X. L., Sato, T., Xing, B., & Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the Total Environment, 350(1–3), 28–37.

    CAS  Article  Google Scholar 

  115. Wang, Y., Villamil, M. B., Davidson, P. C., & Akdeniz, N. (2019). A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of the Total Environment, 685, 741–752.

    CAS  Article  Google Scholar 

  116. Yin, D., Wang, X., Chen, C., Peng, B., Tan, C., & Li, H. (2016). Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere, 152, 196–206.

    CAS  Article  Google Scholar 

  117. Zeng, F., Wei, W., Li, M., Huang, R., Yang, F., & Duan, Y. (2015). Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks. International Journal of Environmental Research and Public Health, 12, 15584–15593.

    CAS  Article  Google Scholar 

  118. Zhao, Y. C., Wang, Z. G., Sun, W. X., Huang, B., Shi, X. Z., & Ji, J. F. (2010). Spatial interrelations and multi-scale sources of soil heavy metal availability in a typical urban-rural transition area in Yangtze River Delta region of China. Geoderma, 156, 216–227.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the anonymous reviewers for their valuable comments and suggestions to improve the quality of the manuscript.

Funding

This study was financially supported by the Ministry of Education, the Government of the People’s Republic of Bangladesh, Bangladesh.

Author information

Affiliations

Authors

Contributions

SAM was involved in conceptualization, methodology, validation, supervision, writing—reviewing and editing, project administration, funding acquisition; SS was involved in methodology, validation, formal analysis, investigation, data curation, visualization, software, writing—Original draft preparation; JF was involved in formal analysis, investigation, data curation, writing—original draft preparation; TRT was involved in conceptualization, methodology, validation, visualization, software, writing—reviewing and editing; AS was involved in formal analysis, investigation, data curation, writing—original draft preparation; FA was involved in formal analysis, investigation, data curation; MRB was involved in writing—reviewing and editing; ZP was involved in conceptualization, methodology, funding acquisition, writing–reviewing and editing.

Corresponding author

Correspondence to Tanmoy Roy Tusher.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al Mamun, S., Saha, S., Ferdush, J. et al. Cadmium contamination in agricultural soils of Bangladesh and management by application of organic amendments: evaluation of field assessment and pot experiments. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-00829-x

Download citation

Keywords

  • Cadmium
  • Heavy metals
  • Organic amendment
  • Biochar
  • Vermicompost
  • Health risk