Assisted phytostabilization of Pb-spiked soils amended with charcoal and banana compost and vegetated with Ricinus communis L. (Castor bean)

Abstract

A greenhouse experiment was performed to elucidate the potency of Prosopis juliflora charcoal (PJC) and banana waste compost (BWC) to improve soil fertility and enhance plant growth rate. Plantlets of Ricinus communis were grown in 0, 400, and 800 mg kg−1 Pb-spiked soil ameliorated with P. juliflora charcoal and banana waste compost at 0, 5%, and 10% (w/w) for 60 days. PJC and BWC significantly (p < 0.05) increased plant growth parameters, that is, number of leaves, node number, plant height, and leaf diameter and reduced oxidative stress manifested by the lesser production of proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA) with respect to control plants. Soil usage of PJC at 10% decreased the Pb accumulation by 61%, whereas BWC decreased Pb concentration in roots by 56% concerning control. Field emission scanning electron microscope (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) showed high macro and microspores on the surface of charcoal while banana compost showed significant raise in the nutrient content (N, P, K, Zn, Ca, Fe, and Mg). Thermogravimetric (TG) and Fourier-transform infrared spectroscopy (FTIR) analysis of banana compost showed enhanced molar convolution of carbohydrate composites and nitrogen content. These findings pave a clear understanding that PJC and BWC are recalcitrant for Pb phytotoxicity and can also be used as nutrient-rich composites for increased crop production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdulrazak, S., Hussaini, K., & Sani, H. M. (2017). Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit. Applied Water Science, 7, 3151–3155.

    CAS  Article  Google Scholar 

  2. Anonymous., (2007) Agency for Toxic Substances and Disease Registry (ATSDR) Lead. CAS#7439-92-1. Available online at http://ww-w.atsdr.cdc.gov/tfacts13.pdf

  3. Anwar, J., Shafique, U., Waheed-uz-Zaman, Salman, M., Dar, A., & Anwar, S. . (2010). removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresource Technology, 101(6), 1752–1755.

  4. Arnon, D. I. (1949). Copper enzymes in isolated chloroplast: Polyphenoloxidases in Beta vulgaris. Plant Physiology, 24, 1–15.

    CAS  Article  Google Scholar 

  5. Arunakumara, K. K. I. U., Walpola, B. C., & Yoon, M. H. (2013). Banana peel: A green solution for metal removal from contaminated waters. The Korean Journal of Environmental Agriculture, 32(2), 108–116.

    Article  Google Scholar 

  6. Ashraf, U., & Tang, X. (2017). Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere, 176, 141–155.

    CAS  Article  Google Scholar 

  7. Bass, A. M., Bird, M. I., Kay, G., & Muirhead, B. (2016). Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Science of the Total Environment, 550, 459–470.

    CAS  Article  Google Scholar 

  8. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    CAS  Article  Google Scholar 

  9. Bauddh, K., Singh, K., Singh, R.P., (2016) Ricinus communis L. a value added crop for remediation of cadmium contaminated soil. The Bulletin of Environmental Contamination and Toxicology 96(2), 265–269.

  10. Boda, R. K., Prasad, M. N. V., & Suthari, S. (2017). Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil. Environmental Science and Pollution Research, 24, 1–10.

    Article  Google Scholar 

  11. Bouchelika, N., Mouni, L., Belkhiri, L., Bouzaza, A., Bollinger, J. C., Madani, K., & Dahmoune, F. (2016). Removal of Pb(II) from water using activated carbon developed from jujube stones, a low-cost sorbent. Separation Science and Technology, and Technology, 51(10), 1645–1653.

    Article  CAS  Google Scholar 

  12. Celestina, C., Hunt, J. R., Sale, P. W. G., & Franks, A. E. (2019). Attribution of crop yield responses to application of organic amendments: A critical review. Soil Tillage Research., 186, 135–145.

    Article  Google Scholar 

  13. Celik, I., Ortas, I., & Kilic, S. (2004). Effect of compost, mycorrhizal, manure and fertilizer on some physical properties of a chromoxerert soil. Soil Tillage Research., 78, 59–67.

    Article  Google Scholar 

  14. Chandrasekhar, C., & Ray, J. G. (2019). Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicology and Environmental Safety, 171, 26–36.

    CAS  Article  Google Scholar 

  15. Chen, Q., Zhang, X., Liu, Y., Wei, J., Shen, W., Shen, Z., & Cui, J. (2016). Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regulation, 81, 253–264.

    Article  CAS  Google Scholar 

  16. Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B., & Cayuela, M. L. (2018). The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutrient Cycling in Agroecosystems, 111, 103–125.

    Article  Google Scholar 

  17. Cui, H., Fan, Y., Fang, G., Zhang, H., Su, B., & Zhou, J. (2016). Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment. Ecotoxicology and Environmental Safety,, 134, 148–155.

    CAS  Article  Google Scholar 

  18. Fernández-Gómez, M. J., Nogales, R., Plante, A., Plaza, C., & Fernández, J. M. (2015). Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting. Waste Management, 35, 81–88.

    Article  CAS  Google Scholar 

  19. Ferreyroa, G. V., Cid, C. V., Verdenelli, R. A., Dominchin, M. F., Meriles, J. M., Pignata, M. L., & Rodriguez, J. H. (2019). Availability of lead in agricultural soils amended with compost of biosolid with wood shavings and yard trimmings. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-06190-y.

    Article  Google Scholar 

  20. Forjan, R., Rodriguez-vila, A., Cerqueria, B., Covelo, E.F., (2017) Comparison of the effects of compost versus compost and biochar on the recovery of a mine soil by improving the nutrient content. Journal of Geochemical Exploration 183 (Part A), 46–57.

  21. Gao, H., Zhang, Z., & Wan, X. (2012). Influences of charcoal and bamboo charcoal amended on soil fluoride-fractions and bioaccumulation of fluoride in tea plants. Environmental Geochemistry and Health, 34(5), 551–562.

    CAS  Article  Google Scholar 

  22. Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biology and Fertility of Soils, 35(4), 219–230.

    CAS  Article  Google Scholar 

  23. Gondek, K., Mierzwa-Hersztek, M., & Kopeć, M. (2018). Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar. Journal of Environmental Management, 210, 87–95.

    CAS  Article  Google Scholar 

  24. Hakeem, K. R., Alharby, H. F., & Rehman, R. (2019). Antioxidative defense mechanism against lead induced phytotoxicity in Fagopyrum kashmirianum. Chemosphere, 216, 595–604.

    CAS  Article  Google Scholar 

  25. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichio- metry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    CAS  Article  Google Scholar 

  26. Hu, J., Lin, B., Yuan, M., Lao, Z., Wu, K., Zeng, Y., et al. (2019). Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area. Environmental Geochemistry and Health, 41(2), 967–980.

    CAS  Article  Google Scholar 

  27. Huang, M., Zhu, Y., Li, Z., Huang, B., Luo, N., Liu, C., & Zeng, G. (2016). Compost as soil amendment to remediate heavy metal contaminated agricultural soil: Mechanism, Efficacy, Problems and Strategies. Water, Air, and Soil Pollution, 227, 359.

    Article  CAS  Google Scholar 

  28. Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., et al. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80–88.

    CAS  Article  Google Scholar 

  29. Isa, S. S. M., Ramli, M. M., Hambali, N. A. M. A., Kasjoo, S. R., Isa, M. M., Nor, N. I. M., et al. (2016). Adsorption properties and potential application of bamboo charcoal: A review. MATEC Web of Conferences, 78, 01097.

    Article  CAS  Google Scholar 

  30. Jin, G. P., Zhu, X. H., Li, C. Y., Fu, Y., Guan, J. X., & Wu, X. P. (2013). Tetraoxalyl ethylenediamine melamine resin functionalized coconut active charcoal for adsorptive removal of Ni(II), Pb(II) and Cd(II) from their aqueous solution. Journal of Environmental Chemical Engineering, 1(4), 736–745.

    CAS  Article  Google Scholar 

  31. Jones, S., Bardos, R. P., Kidd, P. S., Mench, M., Leij, F., Hutchings, T., et al. (2016). Biochar and compost amendments enhance copper immobilization and support plant growth in contaminated soils. The Journal of Environmental Management , 171, 101–112.

    CAS  Article  Google Scholar 

  32. Kalemelawa, F., Nishihara, E., Tsuneyoshi, E., Zahoor, A., Rumana, Y., Tenywa, M. M., & Yamamoto, S. (2012). An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresource Technology, 126, 375–382.

    CAS  Article  Google Scholar 

  33. Kazemi, N., Khavari-Nejad, R. A., Fahimi, H., Saadatmand, S., & Nejad-Sattari, T. (2010). Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and anti-oxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Science Horticulture (Amst.), 126, 402–407.

    CAS  Article  Google Scholar 

  34. Khatua, C., Sengupta, S., Balla, V. K., Kundu, B., Chakraborti, A., & Tripathi, S. (2018). Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Management, 79, 287–295.

    CAS  Article  Google Scholar 

  35. Kiran, B.R., Prasad, M.N.V., (2017) Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. Eurobiotech J 1(2), 1–16.

  36. Kiran, B. R., & Prasad, M. N. V. (2019). Biochar and rice husk ash assisted phytoremediation potential of Ricinus communis L. for lead spiked soils. Ecotoxicology and Environmental Safety, 183, 109574. https://doi.org/10.1016/j.ecoenv.2019.109574.

  37. Kumar, A., & Prasad, M. N. V. (2015). Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica, 53, 66–71.

    CAS  Article  Google Scholar 

  38. Kumar, A., & Prasad, M. N. V. (2018). Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicology and Environmental Safety, 166, 401–418.

    CAS  Article  Google Scholar 

  39. Kumar, A., Tsechansky, L., Lew, B., Raveh, E., Frenkel, O., & Graber, E. R. (2018). Biochar alleviates phytotoxicity in Ficus elastica grown in Zncontaminated soil. Science of the Total Environment, 618, 188–198.

    CAS  Article  Google Scholar 

  40. Kwon, S. I., Jang, Y. A., Owens, G., Kim, M. K., Jung, G. B., Hong, S. C., et al. (2014). Long term assessment of the environmental fate of heavy metals in agricultural soils after cessation of organic waste treatments. Environmental Geochemistry and Health, 36(3), 409–419.

    CAS  Article  Google Scholar 

  41. Lahori, A. H., Zhang, Z. Q., Guo, Z. Y., Li, R. H., Mahar, A., Awasthi, M. K., et al. (2017). Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety, 145, 528–538.

    CAS  Article  Google Scholar 

  42. Laidlaw, M. A. S., Filippelli, G. M., Brown, S., Paz-Ferreiro, J., Reichman, S. M., Netherway, P., et al. (2017). Case studies and evidence-based approaches to addressing urban soil lead contamination. Applied Geochemistry, 83, 14–30.

    CAS  Article  Google Scholar 

  43. Lebrun, M., Miard, F., Nandillon, R., Scippa, G. S., Bourgerie, S., & Morabito, D. (2018). Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere, 222, 810–822.

    Article  CAS  Google Scholar 

  44. Lima, J. Z., Raimondi, I. M., Schalch, V., & Rodrigues, V. G. S. (2018). Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn and Cd. J Environ Mang, 226, 386–399.

    CAS  Article  Google Scholar 

  45. Liu, X. L., Zeng, Z. X., Chen, Q. W., & Zou, H. L. (2014). Effects of biochar and lime additives on non-point load of heavy metals in paddy soil. J Hydraulic Eng, 45, 682–690.

    Google Scholar 

  46. López-Carrión, A. I., Castellano, R., Rosales, M. A., Ruiz, J. M., & Romero, L. (2008). Role of nitric oxide under saline stress: implications on proline metabolism. Biol. Plant. (Prague), 52, 587–591.

    Article  Google Scholar 

  47. López-Orenes, A., Dias, M. C., Ferrer, M. Á., Calderón, A., Moutinho-Pereira, J., Correia, C., & Santos, C. (2018). Different mechanisms of the metalliferous Zygophyllum fabago shoots and roots to cope with Pb toxicity. Environmental Science and Pollution Research, 25, 1319–1330.

    Article  CAS  Google Scholar 

  48. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Article  Google Scholar 

  49. Lv, D., Liu, Y., Zhou, J., Yang, K., Lou, Z., Biag, S. A., & Xu, X. (2018). Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions. Applied Surface Science, 428, 648–658.

    CAS  Article  Google Scholar 

  50. Mancinell, A. L. (1984). Photoregulation of anthocyanin synthesis. VIII. Effects of light pretreatments. Plant Physiololgy, 75, 447–453.

    Article  Google Scholar 

  51. Marichelvam, M. K., & Azhagurajan, A. (2018). Removal of mercury from effluent solution by using Banana Corm and Neem Leaves activated charcoal. Environmental Nanotechnology, Monitoring and Management , 10, 360–365.

    Article  Google Scholar 

  52. Mayadevi, M.R., Sushama, P.K., Sandeep, S., (2017) Effects of in-situ bioconversion of farm residues on growth and quality of banana cv. Nendran in laterite soils of Kerala. Journal of Experimental Biology and Agricultural Sciences 5, 3.

  53. McLean, E.O., (1982) Soil pH and lime requirement. In: Page AL (ed) Methods of soil analysis. No. 9, Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, pp 199–224.

  54. Mehmood, S., Rizwan, M., Bashir, S., Ditta, A., Aziz, O., Yong, L. Z., et al. (2018). Comparative effects of Biochar, Slag and Ferrous–Mn Ore on Lead and Cadmium immobilization in soil. Bulletin of Environment Contamination and Toxicology, 100, 286–292.

    CAS  Article  Google Scholar 

  55. Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilisation: An over-view. Journal of Scientific & Industrial Research, 69, 323–329.

    CAS  Google Scholar 

  56. Nejad, Z. D., Jung, M. C., & Kim, K. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40(3), 927–953.

    Article  CAS  Google Scholar 

  57. Noeline, B. F., Manohar, D. M., & Anirudhan, T. S. (2005). Kinetic and equilibrium modelling of lead (II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Separation and Purification Technology, 45, 131–140.

    CAS  Article  Google Scholar 

  58. Noufal, M. J., Maalla, Z. A., Noufal, D. J., & Hossean, A. A. (2017). Removal of lead from the polluted water by phytoremediation technique (Eclipta prostrata plant). The International Journal of Energy and Environment, 8, 97–104.

    CAS  Google Scholar 

  59. Pluchon, N., Gundale, M. J., Nilsson, M. C., Kardol, P., & Wardle, D. A. (2014). Stimulation of boreal tree seedling growth by wood-derived charcoal: effects of charcoal properties, seedling species and soil fertility. Functional Ecology, 28, 766–775.

    Article  Google Scholar 

  60. Richards. (1954). Diagnosis and improvement of saline and alkali soils. USDA. Handbook No., 60, 160.

    Google Scholar 

  61. Rodriguez-Vila, A., Asensio, V., Forjan, R., & Covelo, E. F. (2015). Chemical fractionation of Cu, Ni, Pb and Zn in a mine soil amended with compost and biochar and vegetated with Brassica juncea L. Journal of Geochemical Exploration, 158, 74–81.

    CAS  Article  Google Scholar 

  62. Saini, S., Arora, S., Kirandeep, S., B.P., Katnoria, J.K., & Kaur, I. (2018). Nitrilotriacetic acid modified bamboo charcoal (NTA-MBC): An effective adsorbent for the removal of Cr (III) and Cr (VI) from aqueous solution. J Environ Chem Eng, 6, 2965–2974.

    CAS  Article  Google Scholar 

  63. Seregin, I. V., Shpigun, L. K., & Ivanov, V. B. (2004). Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology, 51, 525–533.

    CAS  Article  Google Scholar 

  64. Seremeta, D. C. H., Silva, C. P., Zittel, R., & Campos, S. X. (2019). Pb2+ adsorption by compost obtained from the treatment of tobacco from smuggled cigarettes and industrial sewage sludge. Environmental Science and Pollution Research, 26, 797–805.

    CAS  Article  Google Scholar 

  65. Sial, T. A., Khan, M. N., Lan, Z., Kumbhar, F., Zhao, Y., Zhang, J., et al. (2018). Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Safety and Environmental Protection 122, 366–377.

    Article  CAS  Google Scholar 

  66. Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2016). Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiology and Biochemistry, 105, 290–296.

    CAS  Article  Google Scholar 

  67. Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidative systems in acid rain treated bean plants: Protective role of exogenous polyamines. Plant Science, 151, 59–66.

    CAS  Article  Google Scholar 

  68. Wang, W., Liu, Y., Song, S., & Cai, W. (2017). Facile pyrolysis of fishbone charcoal with remarkable adsorption performance towards aqueous Pb(II). The Journal of Environmental Chemical Engineering, 5(5), 4621–4629.

    CAS  Article  Google Scholar 

  69. Wang, Y., Wang, X., Wang, X., Liu, M., Yang, L., Wu, Z., Xia, S., Zhao, J., (2012) Adsorption of Pb(II) in aqueous solution by bamboo charcoal modified with KMnO4 via microwave irradiation. Colloids Surface, A 414, 1–8.

  70. Wiszniewska, A., Fajerska, H. E., Muszynska, E., & Ciarkowska, K. (2015). Natural organic amendments for improved phytoremediation of polluted soils: A review of recent progress. Pedosphere, 26(1), 1–12.

    Article  Google Scholar 

  71. Yadav, S. K., Singh, D. K., & Sinha, S. (2014). Chemical carbonization of papaya seed originated charcoals for sorption of Pb(II) from aqueous solution. The Journal of Environmental Chemical Engineering, 2(1), 9–19.

    CAS  Article  Google Scholar 

  72. Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, S., et al. (2019). The effect of activated biochar addition on remediation efficiency on co-composting with contaminated wetland soil. Resources, Conservation and Recycling, 140, 270–285.

    Article  Google Scholar 

  73. Zafarzadeh, A., Sadeghi, M., Golbini-Mofrad, A., & Beirami, S. (2018). Removal of lead by activated carbon and citrus coal from drinking water. Desalination and Water Treatment, 105, 282–286.

    CAS  Article  Google Scholar 

  74. Zhang, Z., Wang, X., Wang, Y., Xia, S., Chen, L., Zhang, Y., & Zhou, J. (2013). Pb(II) removal from water using Fe-coated charcoal with the assistance of microwaves. Journal of Environmental Science, 25(5), 1044–1053.

    CAS  Article  Google Scholar 

  75. Zhu, Y., Ziang, Y., Zhou, Z., Deng, H., Ding, H., Li, Y., et al. (2018). Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb(II) removal. Journal of Cleaner Production 187, 650–661.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author’s greatly acknowledges the University of Hyderabad for providing research facilities. BRK is grateful to University Grant Commission (UGC-RGNF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Boda Ravi Kiran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiran, B.R., Prasad, M.N.V. Assisted phytostabilization of Pb-spiked soils amended with charcoal and banana compost and vegetated with Ricinus communis L. (Castor bean). Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-00825-1

Download citation

Keywords

  • Adsorption
  • Charcoal
  • Banana waste compost
  • Pb immobilization
  • Oxidative damage
  • Ricinus communis L.