Source characterization and health risks of BTEX in indoor/outdoor air during winters at a terai precinct of North India

Abstract

BTEX are the consistently found air contaminants in indoor and outdoor environments. In order to investigate the exposure levels of BTEX, the indoor and outdoor air was analyzed during winter season at homes located at four selected sites of Gorakhpur, Uttar Pradesh, India, which comprised residential, roadside, industrial and agricultural areas. BTEX were sampled with a low-flow pump (SKC model 220). Samples were extracted with CS2 and the aromatic fraction was subjected to GC-FID. Mean indoor concentration of BTEX was highest at the agricultural (70.9 µg m−3) followed by industrial (30.0 µg m−3), roadside (17.5 µg m−3) and residential site (11.8 µg m−3). At outdoor locations, the mean BTEX levels were highest at the roadside (22.0 µg m−3) followed by industrial (18.7 µg m−3), agricultural (11.0 µg m−3) and residential site (9.1 µg m−3). The I/O ratios were greater than 1 at all the sites except roadside site, where I/O ratios for toluene, ethylbenzene and xylene were less than unity. Poor correlation between indoor and outdoor levels at each site further indicated the dominance of indoor sources. Factor analysis followed by one-way analysis of variance depicts that the presence of BTEX compounds at all the sites indicate a mixture of vehicular and combustion activities. For benzene, the ILTCR values exceeded the safe levels, whereas ethylbenzene was nearby to the recommended level 1 × 10–6. The HQ values were above unity for agricultural (indoors) and industrial (outdoors) as an exception to all the other sites which indicted the value below unity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abtahi, M., Fakhri, Y., Oliveri Conti, G., Ferrante, M., Taghavi, M., Tavakoli, J., et al. (2018). The concentration of BTEX in the air of Tehran: A systematic review-meta analysis and risk assessment. International Journal of Environmental Research and Public Health, 15, 1837.

    Article  CAS  Google Scholar 

  2. APA. (2001). Aromatics: Improving the quality of your life. In. Aromatics Producers Association—Cefic, Brussels, Belgium.

  3. ATSDR. (2010). Toxicological profile for ethylbenzene. GA, USA: Atlanta.

    Google Scholar 

  4. ATSDR, (2004), Interaction profile for: benzene, toluene, ethylbenzene, and xylenes (BTEX). In. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA.

  5. ATSDR. (2003). Toxicological profile information sheet. Agency for Toxic substances and disease registry: Department of Health and Human Services, Public Health Service, USA.

    Google Scholar 

  6. Badjagbo, K., Loranger, S., Moore, S., Tardif, R., & Sauvé, S. (2010). BTEX exposures among automobile mechanics and painters and their associated health risks. Human and Ecological Risk Assessment, 16, 301–316.

    CAS  Article  Google Scholar 

  7. Batterman, S., Jia, C., & Hatzioasilis, G. (2007). Migration of volatile organic compounds from attached garages to residences: A major exposure source. Environmental Research, 104, 224–240.

    CAS  Article  Google Scholar 

  8. Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., & Fritz, P. (2008). The health effects of non industrial indoor air pollution. Journal of Allergy and Clinical Immunology, 121, 585–591.

    CAS  Article  Google Scholar 

  9. Bono, R., Scursatone, E., & Schiliro, T. (2003). Ambient air levels and occupational exposure to benzene, toluene, and xylenes in Northwestern Italy. Journal of Toxicology & Environmental Health Part A: Current Issues, 66, 519–531.

    CAS  Article  Google Scholar 

  10. Brajenović, N., Karačonji, I. B., & Bulog, A. (2015). Evaluation of urinary BTEX, nicotine and cotinine as biomarkers of airborne pollutants in nonsmokers and smokers. Journal of Toxicology and Environmental Health Part A, 78, 1133–1136.

    Article  CAS  Google Scholar 

  11. Bruno, P., Caselli, M., de Gennaro, G., de Gennaro, L., & Tutino, M. (2006). High spatial resolution monitoring of benzene and toluene in the urban area of Taranto (Italy). Journal of Atmospheric Chemistry, 54, 177–187.

    CAS  Article  Google Scholar 

  12. Bureau of Indian Standard (BIS). (2006). Methods for measurement of air pollution. New Delhi, India: Bureau of Indian Standard.

    Google Scholar 

  13. Caselli, M., de Gennaro, G., Marzocca, A., Trizio, L., & Tutino, M. (2010). Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere, 81, 306–311.

    CAS  Article  Google Scholar 

  14. de Blas, M., Navazo, M., Alonso, L., Durana, N., Gomez, M. C., & Iza, J. (2012). Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Science of the Total Environment, 426, 327–335.

    Article  CAS  Google Scholar 

  15. de Gennaro, G., Dambruoso, P. R., Di Gilio, L., et al. (2015). Indoor and outdoor volatile organic compounds monitoring in a multi-storey car park. Environmental Engineering and Management Journal, 14, 1563–1570.

    Article  Google Scholar 

  16. Dehghani, M., Keshtgar, L., Javaheri, M. R., Derakhshan, Z., Oliveri Conti, G., Zuccarello, P., & Ferrante, M. (2017). The effects of air pollutants on the mortality rate of lung cancer and leukemia". Molecular Medicine Reports, 15(5), 3390–3397.

    CAS  Article  Google Scholar 

  17. Demirel, G., Ӧzden, Ӧ, Dӧğeroğlu, T., & Gaga, E. O. (2014). Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Science of the Total Environment, 473–474, 537–548.

    Article  CAS  Google Scholar 

  18. Duarte-Davidson, R., Courage, C., Rushton, L., & Levy, L. (2001). Benzene in the environment: An assessment of the potential risks to the health of the population. Occupational and Environmental Medicine, 58, 2–13.

    CAS  Article  Google Scholar 

  19. Fan, R., Li, J., Chen, L., Xu, Z., He, D., Zhou, Y., et al. (2014). Biomass fuels and coke plants are important sources of human exposure to polycyclic aromatic hydrocarbons, benzene and toluene. Environmental Research, 135, 1–8.

    CAS  Article  Google Scholar 

  20. Ferreira, S. L., Santos, A. M., de Souza, G. R., et al. (2008). Analysis of BTEX in the emissions from an internal combustion engine diesel fuel and diesel-biodiesel mixture (B10) by gas chromatography. Quimica Nova, 31, 539–545.

    CAS  Google Scholar 

  21. Filippini, T., Fiore, M., Tesauro, M., Malagoli, C., Consonni, M., Violi, F., et al. (2020). Clinical and lifestyle factors and risk of amyotrophic lateral sclerosis: A population-based case-control study. International Journal of Environmental Research and Public Health, 17, 857.

    Google Scholar 

  22. Fiore, M., Cristaldi, A., Okatyeva, V., Lo Bianco, S., Oliveri Conti, G., Zuccarello, P., et al. (2019). Physical activity and thyroid cancer risk: A case-control study in Catania (South Italy). International Journal of Environmental Research and Public Health, 16, 1428.

    Article  Google Scholar 

  23. Gallego, E., Roca, F. X., Guardino, X., & Rosell, M. G. (2008). Indoor and outdoor BTX levels in Barcelona city metropolitan area and Catalan rural areas. Journal of Environmental Sciences., 20, 1063–1069.

    CAS  Article  Google Scholar 

  24. Godish, T. (2001). Indoor environmental quality. Boca Raton, FL: Lewis Publishers, CRC Press.

    Google Scholar 

  25. Guo, H., Lee, S. C., Li, W. M., & Cao, J. J. (2003). Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmospheric Environment., 37, 73–82.

    CAS  Article  Google Scholar 

  26. Guo, H., Lee, S. C., Chan, L. Y., & Li, W. M. (2004). Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research, 94, 57–66.

    CAS  Article  Google Scholar 

  27. Hazrati, S., Rostami, R., Farjaminezhad, M., & Fazlazadeh, M. (2016). Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil Iran. Atmospheric Environment, 132, 91–97.

    CAS  Article  Google Scholar 

  28. Hinwood, A. L., Rodriguez, C., Runnion, T., et al. (2007). Risk factors for increased BTEX exposure in four Australian cities. Chemosphere, 66, 533–541.

    CAS  Article  Google Scholar 

  29. Ho, K. F., Lee, S. C., Ho, W. K., et al. (2009). Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong. Atmospheric Chemistry and Physics, 9, 7491–7504.

    CAS  Article  Google Scholar 

  30. Hoquea, R. R., Khillareb, P. S., Agarwal, T., Shridhar, V., & Balachandran, S. (2008). Spatial and temporal variation of BTEX in the urban atmosphere of Delhi India. Science of the Total Environment, 392, 30–40.

    Article  CAS  Google Scholar 

  31. Hsieh, L. T., Yang, H. H., & Chen, H. W. (2006). Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan. Journal of Hazardous Materials, 128, 106–115.

    CAS  Article  Google Scholar 

  32. IARC (2000). (International Agency for Research on Cancer). Some industrial chemicals. Lyon, France. http://monographs.iarc.fr/ENG/Monographs/vol77/index.php.

  33. IARC (2002). (International Agency for Research on Cancer); IARC Monographs Programme on Evaluation of Carcinogenic Risks to Humans.

  34. Ilgen, E., Karfish, N., Angerer, J., Schneider, P., Heinrich, J., Wichmann, H. E., et al. (2001a). Aromatic hydrocarbons in the atmospheric environment. Part I. Indoor versus outdoor sources, the influence of traffic. Atmospheric Environment., 35, 1235–1252.

    CAS  Article  Google Scholar 

  35. Ilgen, E., Levsen, K., Angerer, J., Schneider, P., Heinrich, J., & Wichmann, H. E. (2001b). Aromatic hydrocarbons in the atmospheric environment- Part II.Univariate and multivariate analysis and case studies of indoor concentrations. Atmospheric Environment, 35, 1253–1264.

    CAS  Article  Google Scholar 

  36. Jobson, B. T., Alexander, M. L., Maupin, G. D., & Muntean, G. G. (2005). On-line analysis of organic compounds in diesel exhaust using a proton transfer reaction mass spectrometer (PTR-MS). International Journal of Mass Spectrometry, 245, 78–89.

    CAS  Article  Google Scholar 

  37. Khoder, M. I. (2007). Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmospheric Environment, 41, 554–566.

    CAS  Article  Google Scholar 

  38. Lawrence, A. J., Masih, A., & Taneja, A. (2004). Indoor/outdoor relationships of carbon monoxide and oxides of nitrogen in domestic homes with roadside, urban and rural locations in a central Indian region. Indoor Air, 15, 76–82.

    Article  CAS  Google Scholar 

  39. Lee, S. C., & Wang, B. (2006). Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmospheric Environment, 40, 2128–2138.

    CAS  Article  Google Scholar 

  40. Majumdar, D., Mukherjeea, A. K., & Sen, S. (2011). BTEX in an ambient air of metropolitan city. Journal of Environmental Protection, 2, 11–20.

    CAS  Article  Google Scholar 

  41. Masih, A., Lall, A. S., Taneja, A., & Singhvi, R. (2018). Exposure profiles and health risk assessment of ambient BTX at urban and rural environments of a terai region of northern India. Environmental Pollution, 242, 1678–1683.

    CAS  Article  Google Scholar 

  42. Masih, A., Lall, A. S., Taneja, A., & Singhvi, R. (2017). Exposure profiles, seasonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a terai province of northern India. Chemosphere, 176, 8–17.

    CAS  Article  Google Scholar 

  43. Masih, A., Lall, A. S., Taneja, A., & Singhvi, R. (2016). Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in north India. Atmospheric Environment., 147, 55–66.

    CAS  Article  Google Scholar 

  44. Masih, J., Masih, A., Kulshrestha, A., Singhvi, R., & Taneja, A. (2010). Characterization of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. Journal of hazardous materials., 177, 190–198.

    CAS  Article  Google Scholar 

  45. Miller, L., Xu, X., Wheeler, A., Atari, D. O., Grgicak-Mannion, A., & Luginaah, I. (2011). Spatial variability and application of ratios between BTEX in two canadian cities. The Scientific World Journal, 11, 2536–2549.

    Article  CAS  Google Scholar 

  46. Nikodinovic, J., Kenny, S. T., Babu, R. P., Woods, T., Blau, W. J., & O’Connor, K. E. (2008). The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Applied Microbiology and Biotechnology, 80, 665–673.

    CAS  Article  Google Scholar 

  47. NIOSH. (1994). Pocket guide to chemical hazards NIOSH publications. OH: Cincinnati.

    Google Scholar 

  48. OSHA. (2004). Regulation (Standard-29 CFR) 1910 Subpart Z- Toxic and Hazardous Substances. U.S. Department of Labor. http://www.osha.gov/pls/oshaweb/owastand, 2004.

  49. Pandit, G. G., Srivastava, P. K., & Mohan Rao, A. M. (2001). Monitoring of indoor volatile organic compounds and polycyclic aromatic hydrocarbons arising from kerosene cooking fuel. Science of the Total Environment, 279, 159–165.

    CAS  Article  Google Scholar 

  50. Parra, M. A., Elustondo, D., Bermejo, R., & Santamaria, J. M. (2008). Quantification of indoor and outdoor volatile organic compounds (VOCs) in pubs and cafes in Pamplona Spain. Atmospheric Environment, 42(27), 6647–6654.

    CAS  Article  Google Scholar 

  51. Pilidis, G. A., Karakitsios, S. P., & Kassomenos, P. A. (2005). BTX measurements in a medium-sized European city. Atmospheric Environment., 39, 6051–6065.

    CAS  Article  Google Scholar 

  52. Risk Assessment Information System [RAIS], (2010). Toxicity Profile. Available from. http://rais.ornl.gov/tools/tox_profiles.html.

  53. Saxena, P., & Ghosh, C. (2012). A review of assessment of benzene, toluene, ethylbenzene and xylene (BTEX) concentration in urban atmosphere of Delhi. International Journal of the Physical Sciences., 7, 850–860.

    CAS  Google Scholar 

  54. Schneider, P., Gebefugi, I., Richter, K., Wolke, G., Schnelle, J., Wichmann, H. E., & Heinrich, J. (2001). Indoor and outdoor BTX levels in German cities. Science of the Total Environment, 267, 41–51.

    CAS  Article  Google Scholar 

  55. Serrano-Trespalacios, P. I., Ryan, L., & Spengler, J. D. (2004). Ambient, indoor and personal exposure relationships of volatile organic compounds in Mexico city metropolitan area. Journal of Exposure Analysis and Environmental Epidemiology, 14(Suppl. 1), S118–S132.

    CAS  Article  Google Scholar 

  56. Silke, M., Abou, B., & Uwe, S. (2010). Spatial and temporal variation of outdoor and indoor exposure of VOCs in Greater Cairo. Atmospheric Pollution Research, 1, 94–101.

    Article  CAS  Google Scholar 

  57. Singla, V., Pacharri, T., Satsangi, A., Kumari, K. M., & Lakhani, A. (2012). Comparison of BTX profiles and their mutagenicity assessment at two sites of Agra India. The Scientific World Journal, 11, 1–11.

    Article  CAS  Google Scholar 

  58. Sinha, S. N., Kulkarni, P. K., Shah, S. H., et al. (2006). Environmental monitoring of benzene and toluene produced in indoor air due to combustion of solid biomass fuels. Science of the Total Environment, 357, 280–287.

    CAS  Article  Google Scholar 

  59. Som, D., Dutta, C., Chatterjee, A., Mallick, D., Jana, T. K., & Sen, S. (2007). Studies on commuters’ exposure to BTEX in passenger cars in Kolkata India. Science of the Total Environment, 372, 426–432.

    CAS  Article  Google Scholar 

  60. Son, B., Breysse, P., & Yang, W. (2003). Volatile organic compounds concentrations in residential indoor and outdoor and its personal exposure in Korea. Environmental International, 29, 79–85.

    CAS  Google Scholar 

  61. Srivastava, A., Joseph, A. E., More, A., & Patil, S. (2005). Emissions of VOCs at urban petrol retail distribution centers in India (Delhi and Mumbai). Environmental Monitoring and Assessment, 109, 227–242.

    CAS  Google Scholar 

  62. Stranger, M., Potgieter-Vermaak, S., & Van Grieken, R. (2007). Comparative overview of indoor air quality in Antwerp, Belgium. Environment International, 33, 789–797.

    CAS  Google Scholar 

  63. Tunsaringkarn, T., Siriwong, W., Rungsiyothin, A., & Nopparatbundit, S. (2014). Ambient air’s volatile organic compounds and potential ozone formation in the urban area, Bangkok Thailand. Journal of Environmental and Occupational Science, 3, 130–135.

    Google Scholar 

  64. Uchiyama, S., Tomizawa, T., Tokoro, A., Aoki, M., Hishiki, M., Yamada, T., et al. (2015). Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer. Environmental Research, 137, 364–372.

    CAS  Google Scholar 

  65. Ueno, Y., Horiuchi, T., Morimoto, T., et al. (2001). Microfluidic device for airborne BTEX detection. Analytical Chemistry, 73, 4688–4693.

    CAS  Google Scholar 

  66. Epa, U. S. (1988a). Compendium method TO-1, method for the determination of volatile organic compounds (VOCs) in ambient air using TENAX adsorption and gas chromatography/mass spectrometry (GC/MS) (p. 45268). Cincinnati, OH: Center for Environmental Research Information.

    Google Scholar 

  67. Epa, U. S. (1988b). Compendium method TO-2, method for the determination of volatile organic compounds (VOCs) in ambient air by carbon molecular sieve and gas chromatography/mass spectrometry (GC/MS) (p. 45268). Cincinnati, OH: Center for Environmental Research Information.

    Google Scholar 

  68. USEPA, (1994). Methods for derivation of inhalation reference concentrations and application of inhalation dosimetry. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC, EPA/600/8–90/066F.

  69. USEPA. (1998). Hazardous Substance Research. www.epa.gov/swerust1/pubs/catalo98.htm.

  70. USEPA. (1990). Science advisory board: Reducing risk-setting priorities and strategies for environmental protection, SAB-EC-90–021.

  71. Wallace, L. A., Pellizzari, E. D., & Hartwell, T. D. (1987). Exposures to benzene and other volatile compounds from active and passive smoking. Archives of Environmental Health, 42, 272–279.

    CAS  Article  Google Scholar 

  72. Wolkoff, P., Wilkins, C. K., & Nielsen, G. D. (2006). Organic Compounds in office environments; sensatory irritation, odor, measurements and the role of reactive chemistry. Indoor Air, 16, 7–19.

    CAS  Article  Google Scholar 

  73. Zalel, A., & Yuval, B. D. M. (2008). Revealing source signatures in ambient BTEX concentrations. Environmental Pollution, 156, 553–562.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The financial support from Science and Engineering Research Board (SERB), New Delhi, India, in Project No. SR/FTP/ES-77/2013 is duly acknowledged. The authors gratefully acknowledge Dr. Silas Dayal Sharma, Vice-Principal and Head, Department of Chemistry, St Andrew’s College, Gorakhpur, Uttar Pradesh, India, for providing necessary facilities. The authors are also thankful to Dr. Raj Singhvi (Retired) and Mr. Jay Patel, Environment Response Team (ERT), USEPA, for providing technical support during the analysis of samples.

Funding

The study was funded by the Science & Engineering Research Board (SERB), New Delhi, India, under Grant of Project No. SR/FTP/ES-77/2013.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amit Masih.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to publish

Copy Attached.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masih, A., Dviwedi, S. & Lal, J.K. Source characterization and health risks of BTEX in indoor/outdoor air during winters at a terai precinct of North India. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-00822-4

Download citation

Keywords

  • BTEX
  • Indoor/outdoor
  • Source characterization
  • ILTCR
  • HQ
  • I/O ratio