Influence of destructive bacteria and red clover (trifolium pratense L.) on the pesticides degradation in the soil

Abstract

Lindane and DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) are pesticides from the group of persistent organic pollutants. These compounds, due to lipophilic properties, accumulate in tissues of organisms, are transmitted through the food chain and ultimately threaten human health. The long-term use of pesticides led to soil and water pollution. Microbial degradation of organochlorine compounds is the most eco-friendly method of polluted soil recultivation. Effective degradation of lindane and DDT soil pollution under the influence of introduced destructive bacteria was shown in the laboratory conditions. The concentration of lindane in the soil decreased by 75% and of DDT-by 56% in 30 days. The red clover seedlings increased pesticides degradation in the soil by 20%. The destruction of pesticides in soil was more intense than in the mineral medium. The DGGE analysis of microorganism associations introduced in contaminated soil was possible to follow the survival of the introduced associations. The use of microorganisms-destructors of organochlorine compounds, and plants as well as the biodegradation potential of the soil is a promising direction in the recultivation of polluted soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abhilash, P. C., Srivastava, S., & Nandita, S. N. (2011). Comparative bioremediation potential of four rhizospheric microbial species against lindane. Chemosphere, 82(1), 56–63. https://doi.org/10.1016/j.chemosphere.2010.10.009.

    CAS  Article  Google Scholar 

  2. Ahuja, R., & Kumar, A. (2003). Metabolism of DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane] by Alcaligenes denitrificans ITRC-4 under Aerobic and Anaerobic conditions. Current Microbiology, 46(1), 65–69. https://doi.org/10.1007/s00284-002-3819-1.

    CAS  Article  Google Scholar 

  3. Álvarez, A., Yañez, M. L., Benimeli, C. S., Saez, J. M., Giuliano, A., & Amoroso, M. J. (2012). Lindane removal using Streptomyces strains and maize plants: A biological system for reducing pesticides in soils. International Biodeterioration & Biodegradation, 66, 14–18. https://doi.org/10.3390/ijms131115086.

    CAS  Article  Google Scholar 

  4. Amirova, Z. K., & Speranskaya, O. A. (2016). New persistent organic supertoxicants and their impact on human health. Moscow: Eco-Consent Center Publishing House.

    Google Scholar 

  5. Benimeli, C. S., Fuentesa, M. S., Abate, C. M., & Amoroso, M. J. (2008). Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. International Biodeterioration & Biodegradation, 61, 233–239. https://doi.org/10.1016/j.ibiod.2007.09.001.

    CAS  Article  Google Scholar 

  6. Bertani, G. (1951). Studies orn lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62, 293–300.

    CAS  Article  Google Scholar 

  7. Bharagava, R. N. (2017). Environmental pollutants and their bioremediation approaches. Florida: CRC Press.

    Google Scholar 

  8. Cébron, A., Louvel, B., Faure, P., France-Lanord, C., Chen, Y., Murrell, J. C., & Leyval, C. (2011). Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environmental Microbiology, 13(3), 722–736. https://doi.org/10.1111/j.1462-2920.2010.02376.x.

    CAS  Article  Google Scholar 

  9. Chauhan, A., & Singh, J. (2015). Biodegradation of DDT. J Textile Sci Eng, 5, 1. https://doi.org/10.4172/2165-8064.1000183.

    CAS  Article  Google Scholar 

  10. Curl, E. A., & Truelove, B. (1986). The Rhizosphere (p. 288). Berlin: Springer.

    Google Scholar 

  11. Damborsky, J., Nagata, Y., Trinh, T., Kang, J., Turnbull, M. (2017). Gamma-Hexachlorocyclohexane Graphical Pathway Map. EAWAG http://eawag-bbd.ethz.ch/ghch/ghch_image_map.html

  12. Database of chemical compounds. (2019). NCBI Pubchem: https://pubchem.ncbi.nlm.nih.gov

  13. Egorova, D. O., Farofonova, V. V., Andreev, D. N., Buzmakov, S. A., & Demakov, V. A. (2017). Communities of aerobic bacteria of DDT destructors as a result of natural and artificial selection. Izv Saratov Uni New Ser Chemistry Biology Ecology, 17(1), 79–86.

    Google Scholar 

  14. EzBioCloud Database. (2019). https://www.ezbiocloud.net/

  15. Foght, J., April, T., Biggar, K., & Aislabie, J. (2001). Bioremediation of DDT-contaminated soils: A review. Bioremediation Journal, 5(3), 225–246. https://doi.org/10.1080/20018891079302.

    CAS  Article  Google Scholar 

  16. Kumar, D., & Pannu, R. (2018). Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: A review. Bioresoures and Bioprocessing, 5, 29. https://doi.org/10.1186/s40643-018-0213-9.

    CAS  Article  Google Scholar 

  17. Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., et al. (2010). Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiology and Molecular Biology Reviews, 74(1), 58–80. https://doi.org/10.1128/MMBR.00029-09.

    CAS  Article  Google Scholar 

  18. Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environment Microbiology, 59(3), 695–700.

    CAS  Article  Google Scholar 

  19. Nagata, Y., Endo, R., Ito, M., Ohtsubo, Y., & Tsuda, M. (2007). Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Applied Microbiology and Biotechnology, 76(4), 741–752. https://doi.org/10.1007/s00253-007-1066-x.

    CAS  Article  Google Scholar 

  20. Nazarov, A. V., Shestakova, E. A., & Ananina, L. N. (2017). Effect of red clover on the microbial transformation of phenanthrene and octadecane in the soil. Eurasian Soil Science, 50(8), 971–976. https://doi.org/10.1134/S1064229317080087.

    CAS  Article  Google Scholar 

  21. Rentz, J. A., Alvarez, P. J. J., & Schnoor, J. L. (2004). Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environmental Microbiology, 6(6), 574–583. https://doi.org/10.1111/j.1462-2920.2004.00589.x.

    Article  Google Scholar 

  22. Rozanova, E. P., & Nazina, T. N. (1982). Hydrocarbon-oxidizing bacteria and their activity in oil reservoirs. Microbiology, 51, 324–348.

    Google Scholar 

  23. Salam, J. A., Hatha, M. A. A., Das, N., et al. (2017). Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. Journal of Environmental Management, 193, 394–399. https://doi.org/10.1016/j.jenvman.2017.02.006.

    CAS  Article  Google Scholar 

  24. Tiirola, M. A., Männistö, M. K., Puhakka, J. A., & Kulomaa, M. S. (2002). Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Applied and Environment Microbiology, 68, 173–180. https://doi.org/10.1128/aem.68.1.173-180.2002.

    CAS  Article  Google Scholar 

  25. Wang, G., Zhang, J., Liang, L. W. B., Chen, K., Li, S., Jiang, J., et al. (2010). Co-metabolism of DDT by the newly isolated bacterium Pseudoxanthomonas sp. wax. Brazilian Journal of Microbiology, 41(2), 431–438. https://doi.org/10.1590/S1517-838220100002000025.

    CAS  Article  Google Scholar 

  26. Wangi, M., et al. (2010). Degradation of dichlorodiphenyltrichloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. Academic Journals African Journal of Microbiology Research, 4(3), 185–196.

    Google Scholar 

  27. Wild, S. R., & Jones, K. C. (1992). Organic chemicals entering agricultural soils in sewage sludges: Screening for their potential to transfer to crop plants and livestock. Science of the Total Environment, 119, 85. https://doi.org/10.1016/0048-9697(92)90258-T.

    CAS  Article  Google Scholar 

  28. Yearbook "State of Pesticide Pollution in the Natural Environment of the Russian Federation in 2017". (2018). Obninsk: Taifun.

  29. Zaitsev, G. M., Tsoi, T. V., Grishenkov, V. G., Plotnikova, E. G., & Boroni, A. M. (1991). Genetic control of degradation of chlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum and Pseudomonas cepacia strains. FEMS Microbiology Letters, 81, 171–176. https://doi.org/10.1016/0378-1097(91)90299-p.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The study was carried out as part of the state task of the Ministry of Science and Higher Education of the Russian Federation by the research topic “Molecular mechanisms of adaptation of microorganisms to environmental factors,” the registration number of the task is 01201353249.

Funding

We express our gratitude to the staff of the Laboratory of Molecular Microbiology and Biotechnology of the Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, A.A. Pyankova and E.A. Shestakova for assistance in conducting the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elmira A. Nazarova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nazarova, E.A., Nazarov, A.V., Egorova, D.O. et al. Influence of destructive bacteria and red clover (trifolium pratense L.) on the pesticides degradation in the soil. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-00821-5

Download citation

Keywords

  • γ-HCH (lindane)
  • DDT
  • Pesticide destruction
  • Bacteria
  • Soil bioremediation