Indoor/outdoor relationships, signatures, sources, and carcinogenic risk assessment of polycyclic aromatic hydrocarbons-enriched PM2.5 in an emerging port of northern China

Abstract

Humans spend most of their time in indoor environments, thus a thorough understanding of indoor and outdoor PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) origins for accurate assessment of health risks is required. In the present study, 84 pairs of PM2.5 samples from indoor (laboratory) and outdoor (campus) locations were collected from April to December 2018 in Caofeidian, China. The annual median concentration of PM2.5 outdoors was 90.80 µg/m3, 9.08 times higher than the annual standard of WHO guideline (10 µg/m3). Indoor PM2.5 annual median concentration (41.80 µg/m3) was also higher than the annual standard of ASHRAE guideline (15 µg/m3). The annual median concentrations of ∑18PAHs indoors (44.23 ng/m3) and outdoors (189.6 ng/m3) were highest in winter and descended in the order of autumn > spring > summer. Contrary to summer and autumn, indoor/outdoor concentration ratios were less than 1 in spring and winter, indicating that the contribution of outdoor particle infiltration was more significant than that of indoor sources. The positive matrix factorization model suggested that indoor PAHs came from three sources: vehicle emissions (43%), biomass burning (37%), industry emissions, and coal combustion (20%). Outdoor PAHs came from four sources: petroleum volatilization (39%), vehicle emissions (30%), coal combustion (18%), and biomass burning (13%). The incremental lifetime cancer risk values of indoor and outdoor PAHs in winter exceeded the acceptable level (10−6), and the carcinogenic risk of adults was higher than that of children and teenagers. These results indicated that simultaneous monitoring of indoor and outdoor PAHs is recommended for accurate assessment of health risk, and the analysis in the current work should be helpful to formulate policies to reduce PAHs emissions.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source profiles in Caofeidian

Fig. 6

source profiles in Caofeidian

Fig. 7

References

  1. American National Standards Institute (ANSI). (2015). American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) guideline 24–2015: ventilation and indoor air quality in low-rise residential buildings. https://webstore.ansi.org/Standards/ASHRAE/ASHRAEGuideline242015?source=blog.

  2. Atzei, D., Fermo, P., Vecchi, R., Fantauzzi, M., Comite, V., Valli, G., et al. (2019). Composition and origin of PM2.5 in Mediterranean countryside. Environmental Pollution, 246, 294–302.

    CAS  Article  Google Scholar 

  3. Audy, O., Melymuk, L., Venier, M., Vojta, S., Becanova, J., Romanak, K., et al. (2018). PCBs and organochlorine pesticides in indoor environments-a comparison of indoor contamination in Canada and Czech Republic. Chemosphere, 206, 622–631.

    CAS  Article  Google Scholar 

  4. Balasubramanian, R., & Lee, S. S. (2007). Characteristics of indoor aerosols in residential homes in urban locations: a case study in Singapore. Journal of the Air and Waste Management Association, 57(8), 981–990.

    CAS  Article  Google Scholar 

  5. Barrado, A. I., García, S., Sevillano, M. L., Rodríguez, J. A., & Barrado, E. (2013). Vapor-phase concentrations of PAHs and their derivatives determined in a large city: Correlations with their atmospheric aerosol concentrations. Chemosphere, 93(9), 1678–1684.

    CAS  Article  Google Scholar 

  6. Błaszczyk, E., Rogula-Kozłowska, W., Klejnowski, K., Fulara, I., & Mielzynska-Svach, D. (2017). Polycyclic aromatic hydrocarbons bound to outdoor and indoor airborne particles (PM2.5) and their mutagenicity and carcinogenicity in Silesian kindergartens Poland. Air Quality Atmosphere and Health, 10(3), 389–400.

    Article  CAS  Google Scholar 

  7. Callen, M. S., Iturmendi, A., & Lopez, J. M. (2014). Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environmental Pollution, 195, 167–177.

    CAS  Article  Google Scholar 

  8. Chao, S. H., Liu, J. W., Chen, Y. J., Cao, H. B., & Zhang, A. C. (2019). Implications of seasonal control of PM2.5-bound PAHs: An integrated approach for source apportionment, source region identification and health risk assessment. Environmental Pollution, 247, 685–695.

    CAS  Article  Google Scholar 

  9. Chen, Y., Li, X. H., Zhu, T. L., Han, Y. J., & Lv, D. (2017). PM2.5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment. Science of the Total Environment, 586, 255–264.

    CAS  Article  Google Scholar 

  10. Chen, Y. C., Chiang, H. C., Hsu, C. Y., Yang, T. T., Lin, T. Y., Chen, M. J., et al. (2016). Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environmental Pollution, 218, 372–382.

    CAS  Article  Google Scholar 

  11. Du, W., Shen, G. F., Chen, Y. C., Zhuo, S. J., Xu, Y., Li, X. Y., et al. (2017). Wintertime pollution level, size distribution and personal daily exposure to particulate matters in the northern and southern rural Chinese homes and variation in different household fuels. Environmental Pollution, 231, 497–508.

    CAS  Article  Google Scholar 

  12. Feng, B. H., LI, L. J., Xu, H. B., Wang, T., Wu, R. S., Chen, J., , et al. (2019). PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. Journal of Environmental Sciences-China, 77, 11–19.

    Article  Google Scholar 

  13. Gao, B., Guo, H., Wang, X. M., Zhao, X. Y., Ling, Z. H., Zhang, Z., et al. (2012). Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: Spatiotemporal patterns and emission sources. Journal of Hazardous Materials, 239, 78–87.

    Article  CAS  Google Scholar 

  14. Global Burden of Disease Collaborative Network, Global Burden of Disease Study (2016). Results. http://ghdx.healthdata. org/gbd-results-tool, accessed on April 27, 2018.

  15. Han, B., Ding, X., Bai, Z., Kong, S., & Guo, G. (2011). Source analysis of particulate matter associated polycyclic aromatic hydrocarbon (PAHs) in an industrial city in northeastern China. Journal of Environmental Monitoring, 13(9), 2597–2604.

    CAS  Article  Google Scholar 

  16. Hasheminassab, S., Daher, N., Shafer, M. M., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2014). Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Science of the Total Environment, 490, 528–537.

    CAS  Article  Google Scholar 

  17. Hassanvand, M. S., Naddafi, K., Faridi, S., Nabizadeh, R., Sowlat, M. H., Momeniha, F., et al. (2015). Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Science of the Total Environment, 527, 100–110.

    Article  CAS  Google Scholar 

  18. Hu, J., Liu, C. Q., Zhang, G. P., & Zhang, Y. L. (2012). Seasonal variation and source apportionment of PAHs in TSP in the atmosphere of Guiyang, Southwest China. Atmospheric Research, 118, 271–279.

    CAS  Article  Google Scholar 

  19. ICRP (The international Commission on Radiological Protection). (1994). Human respiratory tract model for radiological protection. ICRP Publication. New York, NY7 Elsevier.

  20. Jamhari, A. A., Sahani, M., Latif, M. T., Chan, K. M., Tan, H. S., Khan, M. F., et al. (2014). Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmospheric Environment, 86, 16–27.

    CAS  Article  Google Scholar 

  21. Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.

    CAS  Article  Google Scholar 

  22. Kong, S. F., Ding, X. A., Bai, Z. P., Han, B., Chen, L., Shi, J. W., et al. (2010). A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province China. Journal of Hazardous Materials, 183, 70–80.

    CAS  Article  Google Scholar 

  23. Kong, S. F., Shi, J. W., Lu, B., Qiu, W. G., Zhang, B. S., Peng, Y., et al. (2011). Characterization of PAHs within PM10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China. Atmospheric Environment, 45, 3777–3785.

    CAS  Article  Google Scholar 

  24. Leung, P. Y., Wan, H. T., Billah, M. B., Cao, J. J., Ho, K. F., & Wong, C. K. C. (2014). Chemical and biological characterization of air particulate matter 2.5, collected from five cities in China. Environmental Pollution, 194, 188–195.

    CAS  Article  Google Scholar 

  25. Li, C. L., Fu, J. M., Sheng, G. Y., Bi, X. H., Hao, Y. M., Wang, X. M., et al. (2005). Vertical distribution of PAHs in the indoor and outdoor PM2.5 in Guangzhou China. Building and Environment, 40, 329–341.

    Article  Google Scholar 

  26. Li, G. L., Lang, Y. H., Yang, W., Peng, P., & Wang, X. M. (2014). Source contributions of PAHs and toxicity in reed wetland soils of Liaohe estuary using a CMB-TEQ method. Science of the Total Environment, 490, 199–204.

    CAS  Article  Google Scholar 

  27. Li, Q., Jiang, N., Yu, X., Dong, Z., Duan, S. G., Zhang, L. S., et al. (2019). Sources and spatial distribution of PM2.5-bound polycyclic aromatic hydrocarbons in Zhengzhou in 2016. Atmospheric Research, 216, 65–75.

    CAS  Article  Google Scholar 

  28. Liu, Y., Yan, C. Q., Ding, X., Wang, X. M., Fu, Q. Y., Zhao, Q. B. A., et al. (2017). Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. Science of the Total Environment, 584, 307–317.

    Article  CAS  Google Scholar 

  29. Ma, Y., & Harrad, S. (2015). Spatiotemporal analysis and human exposure assessment on polycyclic aromatic hydrocarbons in indoor air, settled house dust, and diet: A review. Environment International, 84, 7–16.

    CAS  Article  Google Scholar 

  30. Manoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., & Samara, C. (2016). Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: Source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environmental Science and Pollution Research, 23, 3556–3568.

    CAS  Article  Google Scholar 

  31. Marr, L. C., Kirchstetter, T. W., Harley, R. A., Miguel, A. H., Hering, S. V., & Hammond, S. K. (1999). Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science & Technology, 33, 3091–3099.

    CAS  Article  Google Scholar 

  32. Masih, J., Masih, A., Kulshrestha, A., Singhvi, R., & Taneja, A. (2010). Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. Journal of Hazardous Materials, 177, 190–198.

    CAS  Article  Google Scholar 

  33. Mohammed, M. O. A., Song, W. W., Ma, Y. L., Liu, L. Y., Ma, W. L., Li, W. L., et al. (2016). Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone. Chemosphere, 155, 70–85.

    CAS  Article  Google Scholar 

  34. National Bureau of Statistics of the People’s Republic of China (2012). China Statistical Yearbook 2012, Beijing.

  35. Pongpiachan, S., Tipmanee, D., Khumsup, C., Kittikoon, I., & Hirunyatrakul, P. (2015). Assessing risks to adults and preschool children posed by PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern Thailand. Science of the Total Environment, 508, 435–444.

    CAS  Article  Google Scholar 

  36. Ravindra, K., Wauters, E., & Van Grieken, R. (2008). Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Science of the Total Environment, 396, 100–110.

    CAS  Article  Google Scholar 

  37. Romagnoli, P., Balducci, C., Perilli, M., Gherardi, M., Gordiani, A., Gariazzo, C., et al. (2014). Indoor PAHs at schools, homes and offices in Rome, Italy. Atmospheric Environment, 92, 51–59.

    CAS  Article  Google Scholar 

  38. Saikia, J., Khare, P., Saikia, P., & Saikia, B. K. (2017). Polycyclic aromatic hydrocarbons (PAHs) around tea processing industries using high-sulfur coals. Environmental Geochemistry and Health, 39, 1101–1116.

    CAS  Article  Google Scholar 

  39. Sangiorgi, G., Ferrero, L., Ferrini, B. S., Lo Porto, C., Perrone, M. G., Zangrando, R., et al. (2013). Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmospheric Environment, 65, 205–214.

    CAS  Article  Google Scholar 

  40. Sarigiannis, D. A., Karakitsios, S. P., Zikopoulos, D., Nikolaki, S., & Kermenidou, M. (2015). Lung cancer risk from PAHs emitted from biomass combustion. Environmental Research, 137, 147–156.

    CAS  Article  Google Scholar 

  41. Singh, A., Nair, K. C., Kamal, R., Bihari, V., Gupta, M. K., Mudiam, M. K., et al. (2016). Assessing hazardous risks of indoor airborne polycyclic aromatic hydrocarbons in the kitchen and its association with lung functions and urinary PAH metabolites in kitchen workers. Clinica Chimica Acta, 452, 204–213.

    CAS  Article  Google Scholar 

  42. Stephens, B. (2015). Building design and operational choices that impact indoor exposures to outdoor particulate matter inside residences. Science and Technology for the Built Environment, 21(1), 3–13.

    Article  Google Scholar 

  43. Taghvaee, S., Sowlat, M. H., Hassanvand, M. S., Yunesian, M., Naddafi, K., & Sioutas, C. (2018). Source-specific lung cancer risk assessment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran. Environment International, 120, 321–332.

    CAS  Article  Google Scholar 

  44. Tan, J. H., Zhang, L. M., Zhou, X. M., Duan, J. C., Li, Y., Hu, J. N., et al. (2017). Chemical characteristics and source apportionment of PM2.5 in Lanzhou China. Science of the Total Environment, 601, 1743–1752.

    Article  CAS  Google Scholar 

  45. Tang, N., Suzuki, G., Morisaki, H., Tokuda, T., Yang, X. Y., Zhao, L. X., et al. (2017). Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010. Atmospheric Environment, 152, 354–361.

    CAS  Article  Google Scholar 

  46. Tong, X. N., Chen, X. C., Chuang, H. C., Cao, J. J., Ho, S. S. H., Lui, K. H., et al. (2019). Characteristics and cytotoxicity of indoor fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Hong Kong. Air Quality Atmosphere and Health, 12, 1459–1468.

    CAS  Article  Google Scholar 

  47. USEPA. (2001). Risk assessment Guidance for superfund, volume I: human health evaluation manual (Part E, Supplemetal Guidance for dermal risk assessment), EPA/540/R/99/005. Washington DC, USA7 Office of Emerage and Remedial Response.

  48. USEPA. (2011). Exposure Factors Handbook 2011 Edition (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F.

  49. Vasilakos, C., Levi, N., Maggos, T., Hatzianestis, J., Michopoulos, J., & Helmis, C. (2007). Gas-particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. Journal of Hazardous Materials, 140, 45–51.

    CAS  Article  Google Scholar 

  50. Velali, E., Papachristou, E., Pantazaki, A., Choli-Papadopoulou, T., Planou, S., Kouras, A., et al. (2016). Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition. Environmental Pollution, 208, 774–786.

    CAS  Article  Google Scholar 

  51. Wang, J., Li, X., Jiang, N., Zhang, W. K., Zhang, R. Q., & Tang, X. Y. (2015). Long term observations of PM2.5-associated PAHs: Comparisons between normal and episode days. Atmospheric Environment, 104, 228–236.

    CAS  Article  Google Scholar 

  52. Wang, J. Z., Cao, J. J., Dong, Z. B., Guinot, B., Gao, M. L., Huang, R. J., et al. (2017). Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi’an, China: The effects of suburban scattered emissions in winter. Environmental Pollution, 231, 1330–1343.

    CAS  Article  Google Scholar 

  53. Wang, Q., Liu, M., Yu, Y. P., & Li, Y. (2016). Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city China. Environmental Pollution, 218, 118–128.

    CAS  Article  Google Scholar 

  54. Wei, X. Y., Liu, M., Yang, J., Du, W. N., Sun, X., Huang, Y. P., et al. (2019). Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation. Atmospheric Environment, 203, 1–9.

    CAS  Article  Google Scholar 

  55. WHO European Centre for Environment and Health (2013). Review of evidence on health aspects of air pollution-REVIHAAP project. https://rivm.openrepository.com/handle/10029/256977.

  56. Xie, Y. Y., Zhao, B., Zhao, Y. J., Luo, Q. Z., Wang, S. X., Zhao, B., et al. (2017). Reduction in population exposure to PM2.5 and cancer risk due to PM2.5-bound PAHs exposure in Beijing, China during the APEC meeting. Environmental Pollution, 225, 338–345.

    CAS  Article  Google Scholar 

  57. Xu, H. M., Guinot, B., Niu, X. Y., Cao, J. J., Ho, K., F., Zhao, Z, H., , et al. (2015). Concentrations, particle-size distributions, and indoor/outdoor differences of polycyclic aromatic hydrocarbons (PAHs) in a middle school classroom in Xi’an China. Environmental Geochemistry and Health, 37(5), 861–873.

    CAS  Article  Google Scholar 

  58. Yang, H. H., Hsieh, L. T., Liu, H. C., & Mi, H. H. (2005). Polycyclic aromatic hydrocarbon emissions from motorcycles. Atmospheric Environment, 39, 17–25.

    CAS  Article  Google Scholar 

  59. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.

    CAS  Article  Google Scholar 

  60. Yury, B., Zhang, Z. H., Ding, Y. T., Zheng, Z. L., Wu, B., Gao, P., et al. (2018). Distribution, inhalation and health risk of PM2.5 related PAHs in indoor environments. Ecotoxicology Environmental Safety, 164, 409–415.

    CAS  Article  Google Scholar 

  61. Zarandi, S. M., Shahsavani, A., Khodagholi, F., & Fakhri, Y. (2019). Concentration, sources and human health risk of heavy metals and polycyclic aromatic hydrocarbons bound PM2.5 ambient air, Tehran Iran. Environmental Geochemistry and Health, 41, 1473–1487.

    Article  CAS  Google Scholar 

  62. Zhang, J. D., Liu, W. J., Xu, Y. S., Cai, C. Y., Liu, Y., Tao, S., et al. (2019a). Distribution characteristics of and personal exposure with polycyclic aromatic hydrocarbons and particulate matter in indoor and outdoor air of rural households in Northern China. Environmental Pollution, 255, 113176.

    CAS  Article  Google Scholar 

  63. Zhang, L., Xu, H. J., Fang, B., Wang, H. W., Yang, Z., Yang, W. Q., et al. (2020). Source identification and health risk assessment of polycyclic aromatic hydrocarbon-enriched PM2.5 in Tangshan China. Environmental Toxicology and Chemistry, 39, 458–467.

    CAS  Article  Google Scholar 

  64. Zhang, Y., Zheng, H., Zhang, L., Zhang, Z. Z., Xing, X. L., & Qi, S. H. (2019b). Fine particle-bound polycyclic aromatic hydrocarbons (PAHs) at an urban site of Wuhan, central China: Characteristics, potential sources and cancer risks apportionment. Environmental Pollution, 246, 319–327.

    CAS  Article  Google Scholar 

  65. Zhu, L. Z., Lu, H., Chen, S. G., & Amagai, T. (2009). Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. Journal of Hazardous Materials, 162, 1165–1170.

    CAS  Article  Google Scholar 

  66. Zhu, Y. H., Yang, L. X., Meng, C. P., Yuan, Q., Yan, C., Dong, C., et al. (2015). Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM2.5 of a business office area in Jinan, a heavily polluted city in China. Atmospheric Research, 153, 276–285.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21305028), the Research Foundation of Education Bureau of Hebei Province, China (ZD2018014), the Research Foundation of Health and Family Planning Commission of Hebei (20170893), the Training Foundation of North China University of Science and Technology (201415080311 and JQ201717), and Tangshan Science and Technology Bureau Project (19130209g).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, Z., Liu, J. et al. Indoor/outdoor relationships, signatures, sources, and carcinogenic risk assessment of polycyclic aromatic hydrocarbons-enriched PM2.5 in an emerging port of northern China. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-00819-z

Download citation

Keywords

  • PM2.5-bound polycyclic aromatic hydrocarbons
  • Indoor/outdoor concentration ratios
  • Sources
  • Health risks
  • Caofeidian