Selenium dietary intake, urinary excretion, and toxicity symptoms among children from a coal mining area in Brazil

Abstract

Selenium (Se) is necessary for several physiological functions in the human body; however, high concentrations of this element in coal mining areas raise the possibility of Se-related health risks. Children are much more vulnerable and at risk to environmental hazards than adults. The largest coal mining area of Brazil is located in the city of Candiota, where previous studies point to significant urinary Se concentrations among children. Food intake is the main Se source. The study aimed to evaluate dietary Se intake, as well as urinary Se excretion and classic symptoms of Se intoxication among children from Candiota and a control city in the same region. A cross-sectional study was carried out, with participation from 242 children between 6 and 12 years old in two cities in Rio Grande do Sul state, Brazil. Socioeconomic variables, dietary intake, and Se toxicity symptoms were evaluated through a structured questionnaire, and urinary Se levels were measured. Children from both cities had normal levels of Se intake and urinary excretion; however, children from Candiota had significantly higher levels of Se in both parameters in relation to the control city, especially for Se urinary excretion. There was low prevalence of Se toxicity symptoms. We conclude that coal mining activities may increase Se intake in children and consequently its urinary excretion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahern, M., Hendryx, M., Conley, J., Fedorko, E., Ducatman, A., & Zullig, K. J. (2011a). The association between mountaintop mining and birth defects among live births in central Appalachia, 1996–2003. Environmental Research, 111, 838–846. https://doi.org/10.1016/j.envres.2011.05.019.

    CAS  Article  Google Scholar 

  2. Ahern, M., Mullett, M., MacKay, K., & Hamilton, C. (2011b). Residence in coal-mining areas and low-birth-weight outcomes. Maternal and Child Health Journal, 15, 974–979. https://doi.org/10.1007/s10995-009-0555-1.

    Article  Google Scholar 

  3. Alaejos, M. S., & Romero, C. D. (1993). Urinary selenium concentrations. Clinical Chemistry, 39, 2040–2052.

    Article  Google Scholar 

  4. Almondes, K. G. S., Leal, G. V. S., Cozzolino, S. M. F., Philippi, S. T., & Rondó, C. P. H. (2010). o papel das selenoproteínas no câncer. Revista da Associação Médica Brasileira, 56, 484–488.

    Article  Google Scholar 

  5. Ashton, K., Hooper, L., Harvey, L. J., Hurst, R., Casgrain, A., Fairweather-Tait, S. J., et al. (2009). Methods of assessment of selenium status in humans: A systematic review. The American Journal of Clinical Nutrition, 89, 2025S–2039S. https://doi.org/10.3945/ajcn.2009.27230F.INTRODUCTION.

    CAS  Article  Google Scholar 

  6. ATSDR, A. for toxic S., and D. R. (2011). Toxicological Profile for Selenium. US Dep Heal Hum Serv.

  7. Brasil. Ministério da Saúde. (2014). Guia Alimentar para a População Brasileira Guia Alimentar para a População Brasileira, 2ºEdição. Brasília. Ministério da Saúde. 2014.

  8. Brereton, C., Turagabeci, A., Wilson, D., Sly, P. D., & Jagals, P. (2018). Children’s environmental health indicators for Pacific Island Countries. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph15071403.

    Article  Google Scholar 

  9. Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., et al. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science of the Total Environment, 472, 1001–1009. https://doi.org/10.1016/j.scitotenv.2013.11.124.

    CAS  Article  Google Scholar 

  10. Cominetti, C., & Cozzolino, S. M. F. (2009). Funções plenamente reconhecidas de nutrientes-selênio. International Life Sciences Institute, 8, 24.

    Google Scholar 

  11. Da Silva Júnior, F. M. R., Ramires, P. F. S., dos Santos, M., Seus, E. R., Soares, M. C. F., Muccillo-Baisch, A. L., et al. (2019). Distribution of potentially harmful elements in soils around a large coal-fired power plant. Environmental Geochemistry and Health, 41, 2141–2143. https://doi.org/10.1007/s10653-019-00267-w.

    CAS  Article  Google Scholar 

  12. Dos Santos, M., Da Silva Júnior, F. M., & Muccillo-baisch, A. L. (2017). Selenium content of Brazilian foods: A review of the literature values. Journal of Food Composition and Analysis, 58, 10–15. https://doi.org/10.1016/j.jfca.2017.01.001.

    CAS  Article  Google Scholar 

  13. Dos Santos, M., Da Silva Junior, F. M. R., Vicente-Zurdo, D., Baisch, P., Ro, M., Muccillo-baisch, A. L., et al. (2019). Selenium and mercury concentration in drinking water and food samples from a coal mining area in Brazil. Environmental Science and Pollution Research, 26, 15510–15517. https://doi.org/10.1007/s11356-019-04942-4.

    CAS  Article  Google Scholar 

  14. dos Santos, M., Flores Soares, M. C., Martins Baisch, P. R., Muccillo Baisch, A. L., & Da Silva Júnior, F. M. R. (2018). Biomonitoring of trace elements in urine samples of children from a coal-mining region. Chemosphere, 197, 622–626. https://doi.org/10.1016/j.chemosphere.2018.01.082.

    CAS  Article  Google Scholar 

  15. Du, B., Zhou, J., & Zhou, J. (2018). Selenium status of children in Kashin-Beck disease endemic areas in Shaanxi, China: Assessment with mercury. Environmental Geochemistry and Health, 40, 903–913. https://doi.org/10.1007/s10653-017-0033-4.

    CAS  Article  Google Scholar 

  16. Elétrica Agência Nacional de Energia. (2008). No Atlas de Energia Elétrica no 2015, Brasil.

  17. EPA Agency Environmental Protection. (2015). Selenium compounds. Technol Transf Netw Air Toxics Web site 27–29.

  18. Fairweather-tait, S. J., Bao, Y., Broadley, M. R., Collings, R., Ford, D., Hesketh, J. E., et al. (2011). Selenium in human health and disease. Antiodidants Redox Signal, 14, 1337–1383.

    CAS  Article  Google Scholar 

  19. Fernández-Navarro, P., García-Pérez, J., Ramis, R., Boldo, E., & López-Abente, G. (2012). Proximity to mining industry and cancer mortality. Science of the Total Environment, 435–436, 66–73. https://doi.org/10.1016/j.scitotenv.2012.07.019.

    CAS  Article  Google Scholar 

  20. Ferreira, K. S., Gomes, J. C., & Roberto, C. (2002). Concentrações de selênio em alimentos consumidos no Brasil. Essentials of Medical Geology, 11, 172–177.

    Google Scholar 

  21. Gomes, C., & Mirante, Al. (2012). Poliúria [WWW Document].

  22. Guo, G., Song, B., Xia, D., Yang, Z., & Wang, F. (2018). Metals and metalloids in PM 10 in Nandan County, Guangxi, China, and the health risks posed. Environmental Geochemistry and Health, 40, 2071–2086. https://doi.org/10.1007/s10653-018-0083-2.

    CAS  Article  Google Scholar 

  23. Ha, S., Hu, H., Roth, J., Kan, H., & Xu, X. (2015). Associations between residential proximity to power plants and adverse birth outcomes. American Journal of Epidemiology, 182, 215–224. https://doi.org/10.1093/aje/kwv042.

    Article  Google Scholar 

  24. Hawkes, W. C., Alkan, F. Z., & Oehler, L. (2003). Human nutrition and metabolism absorption, distribution and excretion of selenium from beef and rice in healthy north American Men. The Journal of Nutrition, 133(11), 3434–3442.

    CAS  Article  Google Scholar 

  25. Hays, S. M., Macey, K., Nong, A., & Aylward, L. L. (2014). Biomonitoring Equivalents for selenium. Regulatory Toxicology and Pharmacology, 70, 333–339. https://doi.org/10.1016/j.yrtph.2016.03.004.

    CAS  Article  Google Scholar 

  26. He, B., Liang, L., & Jiang, G. (2002). Distributions of arsenic and selenium in selected Chinese coal mines. Science of the Total Environment, 296(1–3), 19–26. https://doi.org/10.1016/S0048-9697(01)01136-6.

    CAS  Article  Google Scholar 

  27. Hinnig, P. D. F., Mariath, A. B., Freaza, S. R. M., Gambardella, A. M. D., & Bergamaschi, D. P. (2014). Construção de questionário de frequência alimentar para crianças de 7 a 10 anos. Revista Brasileira de Epidemiologia. https://doi.org/10.1590/1809-4503201400020015.

    Article  Google Scholar 

  28. Huang, Y., Wang, Q., Gao, J., Lin, Z., Yuan, L., Yin, X., et al. (2013). Daily dietary selenium intake in a high selenium area of Enshi, China. Nutrients, 5, 700–710. https://doi.org/10.3390/nu5030700.

    CAS  Article  Google Scholar 

  29. Hurtado-Jiménez, R., & Gardea-Torresdey, J. (2007). Evaluación de la exposición a selenio en Los Altos de Jalisco, México. Salud Publica México, 49, 312–315. https://doi.org/10.1590/S0036-36342007000400011.

    Article  Google Scholar 

  30. Hussain, R., & Luo, K. (2018). Geochemical valuation and intake of F, As, and Se in coal wastes contaminated areas and their potential impacts on local inhabitants, Shaanxi China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0131-y.

    Article  Google Scholar 

  31. IBGE-Instituto Brasileiro de Geografia e Estatística. (2019). Instituto Brasileiro de Geografia e Estatística [WWW Document]. https://cidades.ibge.gov.br/brasil/rs/candiota/panorama

  32. IOM, I. of M. (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Diet Ref Intakes 1–506.

  33. Kalkreuth, W., Holz, M., Kern, M., Machado, G., Mexias, A., Silva, M. B., et al. (2006). Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil. International Journal of Coal Geology, 68, 79–116. https://doi.org/10.1016/j.coal.2005.10.006.

    CAS  Article  Google Scholar 

  34. Lei, R., Jiang, N., Zhang, Q., Hu, S., Dennis, B. S., He, S., et al. (2015). Prevalence of selenium, T-2 toxin, and deoxynivalenol in Kashin-Beck disease areas in Qinghai Province, Northwest China. Biological Trace Element Research, 171, 34–40. https://doi.org/10.1007/s12011-015-0495-0.

    CAS  Article  Google Scholar 

  35. Li, F., Goessler, W., & Irgolic, K. J. (1998). Optimization of microwave digestion for determination of selenium in human urine by flow injection-hydride generation-atomic absorption spectrometry. Analytical Communications, 35, 361–364.

    CAS  Article  Google Scholar 

  36. Liang, L., Mo, S., Zhang, P., Cai, Y., Mou, S., Jiang, G., & Wen, M. (2006). Selenium speciation by high-performance anion-exchange chromatography—post-column UV irradiation coupled with atomic fluorescence spectrometry. Journal of Chromatography A, 1118(1), 139–143. https://doi.org/10.1016/j.chroma.2006.03.113.

    CAS  Article  Google Scholar 

  37. López-Bellido Garrido, F. J., & López Bellido, L. (2013). Selenium and health; Reference values and current status of Spanish population. Nutricion Hospitalaria, 28, 1396–1406. https://doi.org/10.3305/nh.2013.28.5.6634.

    CAS  Article  Google Scholar 

  38. Manzanares, W., & Hardy, G. (2016). Can dietary selenium intake increase the risk of toxicity in healthy children? Nutrition, 32, 149–150. https://doi.org/10.1016/j.nut.2015.07.001.

    CAS  Article  Google Scholar 

  39. Martens, I. B. G., Cardoso, B. R., Hare, D. J., Niedzwiecki, M. M., Lajolo, F. M., Martens, A., et al. (2015). Selenium status in preschool children receiving a Brazil nut-enriched diet. Nutrition, 31, 1339–1343. https://doi.org/10.1016/j.nut.2015.05.005.

    CAS  Article  Google Scholar 

  40. Mehdi, Y., Hornick, J. L., Istasse, L., & Dufrasne, I. (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18, 3292–3311. https://doi.org/10.3390/molecules18033292.

    CAS  Article  Google Scholar 

  41. Mirlean, N., Seus-Arrache, E. R., & Vlasova, O. (2017). Selenium deficiency in subtropical littoral pampas: Environmental and dietary aspects. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-9951-4.

    Article  Google Scholar 

  42. Morris, J. S., & Crane, S. B. (2013). Selenium toxicity from a misformulated dietary supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients. https://doi.org/10.3390/nu5041024.

    Article  Google Scholar 

  43. Moya, J., Bearer, C. F., & Etzel, R. A. (2004). Children’s behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics, 113, 996–1006. https://doi.org/10.1542/peds.113.4.S1.996.

    Article  Google Scholar 

  44. Nascimento, S. N., de Charão, M. F., Moro, A. M., Roehrs, M., Paniz, C., Baierle, M., et al. (2014). Evaluation of toxic metals and essential elements in children with learning disabilities from a rural area of Southern Brazil. International Journal of Environmental Research and Public Health, 11, 10806–10823. https://doi.org/10.3390/ijerph111010806.

    CAS  Article  Google Scholar 

  45. Ognjanović, B. I., Djordjević, N. Z., Matić, M. M., Obradović, J. M., Mladenović, J. M., Štajn, A. Š., et al. (2012). Lipid peroxidative damage on cisplatin exposure and alterations in antioxidant defense system in rat kidneys: A possible protective effect of selenium. International Journal of Molecular Sciences, 13, 1790–1803. https://doi.org/10.3390/ijms13021790.

    CAS  Article  Google Scholar 

  46. Oliveira, C. S., Piccoli, B. C., Aschner, M., & Rocha, J. B. T. (2017). Chemical speciation of selenium and mercury as determinant of their neurotoxicity. In Neurotoxicity off metal, advances in neurobiology. (pp. 53–83). https://doi.org/10.1007/978-3-319-60189-2

  47. Pedrero, Z., & Madrid, Y. (2009). Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Analytica Chimica Acta, 634, 135–152. https://doi.org/10.1016/j.aca.2008.12.026.

    CAS  Article  Google Scholar 

  48. Qin, H., Zhu, J., Liang, L., Wang, M., & Su, H. (2013). The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environment International, 52, 66–74. https://doi.org/10.1016/j.envint.2012.12.003.

    CAS  Article  Google Scholar 

  49. Rayman, M. P. (2007). Food chain Se and human health: Emphasis on intake. British Journal of Nutrition, 100, 1–33.

    Google Scholar 

  50. Rayman, M. P. (2020). Selenium intake, status, and health: A complex relationship. Hormones, 19(1), 9–14.

    Article  Google Scholar 

  51. Roca, M., Alfredo, S., Rosa, P., Pardo, O., & Yusa, V. (2016). Biomonitoring of 20 elements in urine of children. Levels and predictors of exposure. Chemosphere, 144, 1698–1705.

    CAS  Article  Google Scholar 

  52. Santos, L. P., Cecília, M., Assunção, F., Matijasevich, A., Santos, I. S., & Barros, A. J. D. (2016). Dietary intake patterns of children aged 6 years and their association with socioeconomic and demographic characteristics, early feeding practices and body mass index. BMC Public Health. https://doi.org/10.1186/s12889-016-3725-2.

    Article  Google Scholar 

  53. Schomburg, L. (2017). Dietary selenium and human health. Nutrients. https://doi.org/10.1186/s40248-017-0110-7.

    Article  Google Scholar 

  54. Stefanowicz, F. A., Talwar, D., Reilly, D. S. J. O., Dickinson, N., Atkinson, J., Hursthouse, A. S., et al. (2013). Erythrocyte selenium concentration as a marker of selenium status q. Clinical Nutrition, 32, 837–842. https://doi.org/10.1016/j.clnu.2013.01.005.

    CAS  Article  Google Scholar 

  55. Szybiński, Z., Walas, S., Zagrodzki, P., Sokołowski, G., Gołkowski, F., & Mrowiec, H. (2010). Iodine, selenium, and other trace elements in urine of pregnant women. Biological Trace Element Research, 138, 28–41. https://doi.org/10.1007/s12011-009-8601-9.

    CAS  Article  Google Scholar 

  56. Temmerman, L. De, Waegeneers, N., Thiry, C., Du, G., Tack, F., & Ruttens, A. (2014). Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Science of the Total Environment, 468–469, 77–82. https://doi.org/10.1016/j.scitotenv.2013.08.016.

    CAS  Article  Google Scholar 

  57. Ullah, H., Liu, G., Yousaf, B., Ubaid, M., Abbas, Q., Ahmed, M., et al. (2018). Ecotoxicology and Environmental Safety Developmental selenium exposure and health risk in daily foodstuffs: A systematic review and meta-analysis. Ecotoxicology and Environmental Safety, 149, 291–306. https://doi.org/10.1016/j.ecoenv.2017.11.056.

    CAS  Article  Google Scholar 

  58. U.S. Environmental Protection Agency. (2019). Guidelines for human exposure assessment (pp. EPA/100/B). Washington, D.C.: Risk Assess. Forum, U.S. EPA.

  59. Vesper, D. J., Roy, M., & Rhoads, C. J. (2008). Selenium distribution and mode of occurrence in the Kanawha Formation, southern West Virginia, U.S.A. International Journal of Coal Geology, 73, 237–249. https://doi.org/10.1016/j.coal.2007.06.003.

    CAS  Article  Google Scholar 

  60. Winkel, L. H. E., Vriens, B., Jones, G. D., Schneider, L. S., Pilon-Smits, E., & Bañuelos, G. S. (2015a). Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients, 7, 4199–4239. https://doi.org/10.3390/nu7064199.

    CAS  Article  Google Scholar 

  61. Winkel, L. H. E., Vriens, B., Jones, G. D., Schneider, L. S., Pilon-Smits, E., & Bañuelos, G. S. (2015b). Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients. https://doi.org/10.3390/nu7064199.

    Article  Google Scholar 

  62. Yoneyama, S., Miura, K., Itai, K., Yoshita, K., Nakagawa, H., Shimmura, T., et al. (2008). Dietary intake and urinary excretion of selenium in the Japanese adult population: The INTERMAP Study Japan. European Journal of Clinical Nutrition, 62, 1187–1193. https://doi.org/10.1038/sj.ejcn.1602842.

    CAS  Article  Google Scholar 

  63. Yudovich, Y. E., & Ketris, M. P. (2006). Selenium in coal: A review. International Journal of Coal Geology, 67, 112–126. https://doi.org/10.1016/j.coal.2005.09.003.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the CAPES for providing doctoral scholarships (Marina dos Santos and Julia Oliveira Penteado). The authors acknowledge and express their gratitude to the subjects who submitted samples and provided critical information regarding for this study.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Flavio Manoel Rodrigues da Silva Júnior.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, M., Penteado, J.O., Baisch, P.R.M. et al. Selenium dietary intake, urinary excretion, and toxicity symptoms among children from a coal mining area in Brazil. Environ Geochem Health 43, 65–75 (2021). https://doi.org/10.1007/s10653-020-00672-6

Download citation

Keywords

  • Selenium
  • Child
  • Food intake
  • Urine
  • Coal mining
  • Toxicity