Bacteriostatic and bactericidal clays: an overview

Abstract

This article aims to draw an overview on the actual knowledge on bacteriostatic and bactericidal natural clays. Particular emphasis is given to the role of clay itself, the action of reduced metals located either in the structure of clay minerals or external to them as constituents of associate minerals, and the definition of the mechanisms of action based on the achievements found in all available studies being carried out so far. The term bactericidal is herein used when a clay or a clay mineral kill the bacteria, whereas the term bacteriostatic is used when those minerals stop bacteria growth and replication. The second part of this article deals with experimental studies on bactericidal natural clay, experience and perspective for the preparation of bactericidal natural clays, interesting on the authors perspective and experience for the preparation of pathogens safe both therapeutic and cosmetic natural mud/natural peloid, and better yet of both therapeutic 87oooand cosmetic peloid itself and designed and engineered peloid. The authors also show how to convert non-antimicrobial clay into antimicrobial one, opening the way in the field of pelotherapy to the preparation of sanitary safe peloids addressed, for instance, to the treatment of rheumatic disabilities, as well as to the preparation of antimicrobial peloids and, in particular, of dermatological ointments, all able to fight infectious skin disorders.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Adusumilli, S., & Haydel, S. E. (2016). In vitro antibacterial activity and in vivo efficacy of hydrated clays on Mycobacterium ulcerans growth. BMC Complementary and Alternative Medicine,16(40), 1–9. https://doi.org/10.1186/s12906-016-1020-5.

    CAS  Article  Google Scholar 

  2. Aguzzi, C., Sandri, G., Bonferoni, C., Cerezo, P., Rossi, S., Ferrari, F., et al. (2014). Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces,113, 152–157.

    CAS  Google Scholar 

  3. Antonelli, M., & Donelli, D. (2018). Effects of balneotherapy and spa therapy on levels of cortisol as a stress biomarker: A systematic review. International Journal of Biometeorology. https://doi.org/10.1007/s00484-018-1599-y.

    Article  Google Scholar 

  4. Arias, C. A., & Murray, B. E. (2009). Antibiotic-resistant bugs in the 21st century: A clinical super-challenge. The New England Journal of Medicine,360, 439–443.

    CAS  Google Scholar 

  5. Awad, M., López-Galindo, A., Setti, M., & El-Rahmany, Viseras C. (2017). Kaolinite in pharmaceuticals and biomedicine. International Journal of Pharmaceutics,533, 34–48.

    CAS  Google Scholar 

  6. Baschini, M. T., Pettinari, G. R., Vallés, J. M., Aguzzi, C., Cerezo, P., López-Galindo, A., et al. (2010). Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science,49, 205–212.

    CAS  Google Scholar 

  7. Baschini, M. T., Piovano, E., López-Galindo, A., Dietrich, D., & Setti, M. (2014). Composición y propriedades de fangos (peloides), aguas y sales procedentes de lagunas y lagos salinos usados com fines terapêuticos y cosméticos. In H. A. Torres (Ed.), Peloteraia: Aplicaciones médicas y cosméticas de fangos termales (pp. 145–154). Panama City: Fundación Bibilis.

    Google Scholar 

  8. Behroozian, S., Svensson, S. L., & Davies, J. (2016). Kisameet clay exhibits potent antibacterial activity against the ESKAPE pathogens. American Society of Microbiology, mBios,7(1), e01842–15.

    Google Scholar 

  9. Belkaide, Y., & Hand, T. (2014). Role of the microbiota in immunity and inflammation. Cell,157(1), 121–141.

    Google Scholar 

  10. Belkaide, Y., & Segre, J. A. (2014). Dialogue between skin microbiota and immunity. Science,346, 954–959.

    Google Scholar 

  11. Bellometti, S., Gallotti, C., Pacileo, G., Rota, A., & Tenconi, M. T. (2007). Evaluation of outcomes in spa-treated osteoarthrosic patients. Journal of Preventive Medicine and Hygiene,48(1), 1–4.

    CAS  Google Scholar 

  12. Brunet de Courssou, L. (2002). 5th WHO advisory group meeting on Buruli ulcer. Geneva: Study Group Report on Buruli Ulcer Treatment with Clay.

    Google Scholar 

  13. Bui, Q. C., Nguen, H. C., Vesentsev, A. I., Buhanov, V. D., Sokolovsky, P. V., & Mihaylyukova, M. O. (2016). The antibacterial properties of modified bentonite deposit tam bo in Vietnam. Research Result: Pharmacology and Clinical Pharmacology,2(3), 63–74.

    Google Scholar 

  14. Bujdáková, H., Bujdáková, V., Májekcvá-Kosčová, H., Gaálová, B., Bizovská, H., & Bohác, P. (2018). Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite. Applied Clay Science,158, 21–28.

    Google Scholar 

  15. Caflisch, K. M., Schmidt-Malan, S. M., Mandrekar, J. N., Karau, M. J., Nicklas, J. P., Williams, L. B., et al. (2018). Antibacterial activity of reduced iron clay against pathogenic bacteria associated with wound infections. International Journal of Antibacterial Agents,52, 1–5.

    Google Scholar 

  16. Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health: A review. Applied Clay Science,21, 155–163.

    CAS  Google Scholar 

  17. Carretero, M. I., Gomes, C. S. F., & Tateo, F. (2006). Clays and human health. Handbook of clay science. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Developments in clay science no 1 (pp. 717–741). Amsterdam: Elsevier.

    Google Scholar 

  18. Carretero, M. I., Gomes, C. S. F., & Tateo, F. (2013). Clays, drugs and human health. In F. Bergaya & G. Lagaly (Eds.), Handbook of clay science, second edition, Part B. Techniques and applications, Chapter 5.5 (pp. 711–764). Amsterdam: Elsevier.

    Google Scholar 

  19. Carretero, M. I., & Pozo, M. (2007). Mineralogía aplicada: Salud y medio ambiente. Madrid: Thomson.

    Google Scholar 

  20. Centini, M., Tredici, M. R., Biondi, N., Buonocore, A., Maffei Facino, R., & Anselmi, C. (2015). Thermal mud maturation: Organic matter and biological activity. International Journal Cosmet Science,37, 339–347.

    CAS  Google Scholar 

  21. Cerri, G., De’Gennaro, M., Bonferoni, M. C., & Caramella, C. (2004). Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Applied Clay Science,27, 141–150.

    CAS  Google Scholar 

  22. Cho, I., & Blaser, M. J. (2012). The human microbiome at the interface of health and disease. Nature Reviews Genetics,13, 260–270.

    CAS  Google Scholar 

  23. Costantino, M. (2006). Sulphur mud-bath treatment in osteoarthrosis: Therapeutic activity and efficiency on the quality of life. Clinical Therapeutics,157, 525–529.

    CAS  Google Scholar 

  24. Costantino, M., & Lampa, E. (2005). Psoriasis and mud bath therapy: Clinical-experimental study. Clinical Therapeutics,156, 145–149.

    CAS  Google Scholar 

  25. Cunningham, T. B., Koehl, J. L., Summers, J. S., & Haydel, S. E. (2010). pH-dependent metal ion toxicity influences of the antibacterial activity of two natural mineral mixtures. PLoS ONE,5, e9456.

    Google Scholar 

  26. Dashiff, A., Junka, R. A., Libera, M., & Kadouri, D. E. (2011). Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. Journal of Applied Microbiology,110(2), 431–444.

    CAS  Google Scholar 

  27. De la Rosa-Gomez, I., Olguín, M. T., Garcia-Sosa, I., Alcantara, D., & Rodriguez-Fuentes, G. (2008). Silver supported on natural Mexican zeolite as an antibacterial material. Micropor Mesopor Mater,39, 431–444. https://doi.org/10.1016/S1387-1811(00)00217-1.

    Article  Google Scholar 

  28. Delfino, M., Russ, N., Migliaccio, G., & Carraturo, N. (2003). Experimental study on efficacy of thermal muds of Ischia Island combined with balneotherapy in the treatment of psoriasis vulgaris with plaques. Clinica Terapeutica,154(3), 167–171.

    CAS  Google Scholar 

  29. Demirci, S., Ustaoglu, Z., Yilmazer, G. A., Sahin, F., & Baç, N. (2014). Antimicrobial properties of zeolite-X, and zeolite-A ion exchanged with G, Cu, and Zn against a broad range of microorganisms. Applied Biochemistry and Biotechnology,172, 1652–1662.

    CAS  Google Scholar 

  30. Diekema, D. J., BootsMiller, B. J., Vaughn, T. E., Woolson, R. F., & Yankey, J. W. (2004). Antimicrobial resistance trends and outbreak frequency in United States hospitals. Clinical Infectious Diseases,38, 78–85.

    Google Scholar 

  31. Dreno, B. (2004). Topical antibacterial therapy for acne vulgaris. Drugs,64(21), 2389–2397.

    CAS  Google Scholar 

  32. Edraki, M., & Zaarei, D. (2018). Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian Journal of Green Chemistry,2, 189–200.

    CAS  Google Scholar 

  33. Espejo-Antúnez, L., Cardero-Durán, M. A., Garrido-Ardila, E. M., Torres-Piles, S., & Caro-Puértolas, B. (2013). Clinical effectiveness of mud pack therapy in knee osteoarthritis. Rheumatology (Oxford),52, 659–668.

    Google Scholar 

  34. Evcik, D., Kavuncu, V., Yeter, A., & Yigit, I. (2007). The efficacy of balneotherapy and mud-pack therapy in patients with knee osteoarthritis. Joint Bone Spine,74, 60–65.

    Google Scholar 

  35. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Research,52(4), 662–668.

    CAS  Google Scholar 

  36. Ferreira, L., Fonseca, A. M., Botelho, G., Almeida-Aguiar, C., & Neves, I. C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Micropor Mesopor Mater,160, 126–132. https://doi.org/10.1016/j.micromeso.2012.05.006.

    CAS  Article  Google Scholar 

  37. Ferrell, R. E. (2008). Medicinal clay and spiritual healing. Clays and Clay Minerals,56, 751–760.

    CAS  Google Scholar 

  38. Fioravanti, A., Cantarini, L., Guidelli, G. M., & Galeazzi, M. (2011). Mechanisms of action of spa therapies in rheumatic diseases: What scientific evidence is there? Rheumatology International,31(1), 1–8.

    Google Scholar 

  39. Fioravanti, A., & Chelesschi, S. (2015). Mechanisms of action of balneotherapy in rheumatic diseases. Balnea,10, 43–56.

    Google Scholar 

  40. Fioravanti, A., Tenti, S., Gianitti, C., Fortunati, N. A., & Galeazzi, M. (2014). Short and long-term effects of mud-bath treatment on hand osteoarthritis: A randomized clinical trial. International Journal of Biometeorology,58(1), 79–86.

    Google Scholar 

  41. Flerer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America,103, 626–631. https://doi.org/10.1073/pnas.0507535103.

    CAS  Article  Google Scholar 

  42. François, G., Micollier, A., & Rouvie, I. (2005). Les Boues Thermales, Atelier Santé Environmental (p. 29). Rennes: ENSP (École Nationale de la Santé Publique).

    Google Scholar 

  43. Friedlander, L. R., Puri, N., Martin, A., Schoonen, A., & Karzai, A. W. (2015). The effect of pyrite on Escherichia coli in water: Proof-of-concept for the elimination of waterborne bacteria by reactive minerals. Journal of Water and Health,13, 1. https://doi.org/10.2166/wh.2014.013.

    Article  Google Scholar 

  44. Gao, Z., Tseng, C. H., Strober, B. E., Pei, Z., & Blaser, M. J. (2008). Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE,3, e2719.

    Google Scholar 

  45. Garcidueñas-Pina, R., & Cervantes, C. (1995). Microbial interactions with aluminum. BioMetals,9, 311–316.

    Google Scholar 

  46. Garshabi, N., Ghorbanpour, M., Nouri, A., & Loftiman, S. (2017). Preparation of zinc oxide-nanoclay hybrids by alkaline ion exchange method. Brazilian Journal of Chemical Engineering,34(4), 1055–1063.

    Google Scholar 

  47. Gaskell, E. E., & Hamilton, A. R. (2014). Antimicrobial clay-based materials for wound care. Future Medicinal Chemistry,6(6), 641–655. https://doi.org/10.4155/fmc.14.17.

    CAS  Article  Google Scholar 

  48. George, K. M., Barker, L. P., Welty, D. M., & Small, P. L. C. (1998). Partial purification and characterization of biological effects of a lipid toxin produced by Mycobacterium ulcerans. Infection and Immunity,66(2), 587–593.

    CAS  Google Scholar 

  49. George, K. M., Chatterjee, D., Gunawardana, G., Welty, D., Hayman, J., Lee, R., et al. (2002). Mycolactone: A polyketide toxin from Mycobacterium ulcerans, required for virulence. Science,283(5403), 854.

    Google Scholar 

  50. Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC (Royal Society of Chemistry) Advances,5, 37. https://doi.org/10.1039/c4ra16945j.

    CAS  Article  Google Scholar 

  51. Ghezzi, L., Spepi, A., Agnolucci, M., Cristani, C., Giovannetti, M., Tiné, M., et al. (2018). Kinetics of release and antibacterial activity of salicylic acid loaded into halloysite nanotubes. Applied Clay Science,160, 88–94.

    CAS  Google Scholar 

  52. Ghorbanpour, M., Mazloumi, M., Nouri, A., & Iotfiman, S. (2017). Silver-doped nanoclay with antibacterial activity. Journal of Ultrafine Grained and Nanostructural Materials,50(2), 124–131. https://doi.org/10.22059/JUFGNSM.2017.02.07.

    CAS  Article  Google Scholar 

  53. Gomes, C. S. F. (2015). In pelotherapy what is more important, the peloid solid phase or the peloid liquid phase? Balnea,10, 125–142.

    Google Scholar 

  54. Gomes, C. S. F. (2018). Healing and edible clays: A review of basic concepts, benefits and risks. Environmental Geochemistry and Health,40, 1739–1765. https://doi.org/10.1007/s10653-016-9903-4.

    CAS  Article  Google Scholar 

  55. Gomes, C. S. F., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., et al. (2013). Peloids and pelotherapy: Historical evolution, classification and glossary. Applied Clay Science,75–76, 28–38.

    Google Scholar 

  56. Gomes, C. S. F., Gomes, J. H., Tacão, M., Henriques, I., & Silva, E. F. (2019). Bactericidal clay to be used as topical ointment in skin infections. In STCV’19, international symposium on thermalism and quality of life ourense, Spain.

  57. Gomes, C. S. F., & Silva, J. B. P. (2007). Minerals and clay minerals in medical geology. Applied Clay Science,36, 4–21.

    CAS  Google Scholar 

  58. Gomes, C. S. F., Silva, J. B. P., & Gomes, J. H. C. (2015). Natural peloids versus designed and engineered peloids. Boletín de la Sociedad Española de Hidrología Médica,30(1), 15–36.

    Google Scholar 

  59. Grice, E. A., Kong, H. H., Conlan, S., Deming, C. B., Davis, J., & Young, A. C. (2009). Topographical and temporal diversity of the human skin microbiome. Science,324, 1190–1192.

    CAS  Google Scholar 

  60. Hauser, E. A. (1950). Canamin clay and its properties. Can Chem Process Ind,34, 979.

    CAS  Google Scholar 

  61. Hauser, E. A. (1952). Kisameet Bay clay deposit. In: Problems of clay and laterite genesis, symposium at annual meeting of the American institute of mining and metallurgical engineers, St Louis, MO (pp. 178–190).

  62. Haydel, S. E., Remenih, C. M., & Williams, L. B. (2008). Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. Journal of Antimicrobial Chemotherapy,61, 353–361.

    CAS  Google Scholar 

  63. Holešová, S., Hundáková, M., & Pazdziora, E. (2016). Antibacterial kaolinite based nanocomposites. Procedia Materials Science,12, 124–129.

    Google Scholar 

  64. Hrenovic, J., Milenkovic, J., Goic-Barisic, I., & Rajic, N. (2013). Antibacterial activity of containing natural zeolite against clinical isolates of Acinetobacter baumannii. Microporous and Mesoporous Materials,169, 148–152.

    CAS  Google Scholar 

  65. Hrenovic, J., Milenkovic, J., Ivankovic, T., & Rajic, N. (2012). Antibacterial activity of heavy metal-loaded natural zeolite. Journal of Hazardous Materials,30, 201–212.

    Google Scholar 

  66. Hu, C. H., & Xia, M. S. (2006). Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K-88. Applied Clay Science,31, 180–184.

    CAS  Google Scholar 

  67. Hu, C. H., Xu, Z. R., & Xia, M. S. (2005). Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Veterinary Microbiology,109, 83–88.

    CAS  Google Scholar 

  68. James, G. A., Swogger, E., & Wolcott, R. (2008). Biofilms in chronic wounds. Wound Repair and Regeneration,16, 37–44.

    Google Scholar 

  69. Jiao, L., Lin, F., Cao, S., Wang, C., Wu, H., Shu, M., et al. (2017). Preparation, characterization, antimicrobial and cytoxicity studies of copper-zinc loaded montmorillonite. Journal of Animal Science and Biotechnology,8, 7.

    Google Scholar 

  70. Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environment Microbiology,74, 2171–2178. https://doi.org/10.1128/AEM.02001.07.

    CAS  Article  Google Scholar 

  71. Kalinowski, B. E., Bengtsson, A., Pedersen, K., Lilja, C., Sellin, P., et al. (2016). Threshold density for microbial sulphate reduction in bentonite. In Goldschmidt conference proceedings, Yokohama, Abstract no. 771.

  72. Kostyniak, P., Constanzo, P. M., Syracuse, J., Giese, R. (2003). Antimicrobial activity of modified clay minerals. Abstract in clays and clay minerals annual meeting, Athens Ga.

  73. Kwakye-Awuah, B., Williams, C., Kenward, M. A., & Radecka, I. (2008). Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of Applied Microbiology,104, 1516–1524.

    CAS  Google Scholar 

  74. Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology,11, 371–384.

    CAS  Google Scholar 

  75. Londono, S. C., Hartnett, H. H., & Williams, L. B. (2017). The antibacterial activity of aluminium in clay from Colombian Amazon. Environmental Science and Technology,51, 2401–2408. https://doi.org/10.1021/acs.est.6b04670.

    CAS  Article  Google Scholar 

  76. Londono, S. C., Williams, L. (2015). Evaluating the antibacterial action of a clay from the Colombian Amazon. In International applied geochemistry symposium, April 2015, 7 pp.

  77. Londono, S. C., & Williams, L. B. (2016). Unraveling the antibacterial mode of action of a clay from Colombian Amazon. Environmental Geochemistry and Health,38, 363–379.

    CAS  Google Scholar 

  78. Lucera, A., Costa, C., Conte, A., & Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology,3, 287.

    Google Scholar 

  79. Ma’or, Z., Henis, Y., Alon, Y., Orlov, E., Sorensen, K. B., & Oren, A. (2006). Antimicrobial properties of Dead Sea black mineral mud. International Journal of Dermatology,45(5), 504–511.

    Google Scholar 

  80. Magana, S. M., & Quintana, P. (2008). Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical,281, 192–199.

    CAS  Google Scholar 

  81. Malachová, K., Praus, P., Rybková, Z., & Kosák, O. (2011). Antibacterial and antifungal activities of silver, copper and zinc montmorillonite. Applied Clay Science,53, 642–645.

    Google Scholar 

  82. Maraver, F. (2013). Mechanisms of action of pelotherapy: State of the art. In J. Nunes, C. Gomes, & J. Silva (Eds.), Livro de Actas do III Congresso Iberoamericano de Peloides (pp. 9–18). São Miguel, The Azores: Ponta Delgada.

    Google Scholar 

  83. Maraver, F. (2017). Investigación actual en peloterapia. Libro de Resúmenes del V Congreso Iberoamericano de Peloides (pp. 33–35). Badajoz: Balneario El Raposo.

    Google Scholar 

  84. Masurat, P., Ericksson, S., & Pedersen, K. (2010). Microbial sulphide production in compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste. Applied Clay Science,47, 58–64.

    CAS  Google Scholar 

  85. McInnes, A. D. (2012). Diabetic foot disease in the United Kingdom: About time to put feet first. Journal of Foot and Ankle Research,5, 26.

    Google Scholar 

  86. Metge, D. W., Williams, L., Eberl, D. D., Bium, A. E., & Harvey, B. W. (2013). Synthetic antibacterial clay compositions and method of using them. United States Patent US2013/004544A1.

  87. Milenkovic, J., Hrenovic, J., Matijasevic, D., Niksic, M., & Rajic, N. (2017). Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environmental Science and Pollution Research,24, 20273–20281.

    CAS  Google Scholar 

  88. Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., & Leonardi, G. R. (2017). Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes. International Journal of Pharmaceutics,534, 213–219.

    CAS  Google Scholar 

  89. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology,16, 2346–2353.

    CAS  Google Scholar 

  90. Morrison, K. D., Misra, R., & Williams, L. B. (2016). Unearthing the antibacterial mechanism of medicinal clay: A geochemical approach to combating antibiotic resistance. Scientific Reports,6, 19043. https://doi.org/10.1038/Srep19043.

    CAS  Article  Google Scholar 

  91. Morrison, K. D., Underwood, J. C., Metge, D. W., Eberl, D. D., & Williams, L. B. (2013). Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-013-9585-0.

    Article  Google Scholar 

  92. Morrison, K. D., Williams, S. N., & Williams, L. B. (2017). The anatomy of an antibacterial clay deposit: A new economic geology. Economic Geology, Bulletin of the Society of Economic Geologists,112(7), 1551–1570.

    Google Scholar 

  93. O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations of the review on antimicrobial resistance. London: Department of Health and the Wellcome Trust.

    Google Scholar 

  94. Otto, C. C., & Haydel, S. E. (2013a). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE,8(5), 1–9.

    Google Scholar 

  95. Otto, C. C., & Haydel, S. E. (2013b). Microbicidal clays: Composition, activity, mechanism of action, and therapeutic applications. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (pp. 1169–1180). Mexico city: FORMATEX.

    Google Scholar 

  96. Otto, C. C., Koehl, J. L., Solanky, D., & Haydel, S. E. (2014). Metal ions, non metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. PLoS ONE,9, e115172.

    Google Scholar 

  97. Panko, A. V., Kovzun, I. G., Ulberg, Z. R., Oleinik, V. A., Nikipelova, E. M., et al. (2016). Colloid-chemical modification of peloids with nano-and microparticles of natural minerals and their practical use. In: Chapter 14: Nanophysics, nanophotonics, surface studies, and applications (pp. 163–177). Springer Proceedings in Physics 183.

  98. Parolo, M. E., Fernández, L. G., Zajonkovsky, I., Sánchez, M. P., Baschini, M. (2011). Antibacterial activity of materials synthesized from clay minerals. In A. Méndez-Vilas (Ed.), Science against microbial pathogens: Communicating current research and technological advances (pp. 144–151).

  99. Photo-Jones, E., Keane, C., Jones, A. X., Stamatakis, M., Robertson, P., Hall, A. J., et al. (2015). Testing Dioscorides’ medicinal clays for their antibacterial properties: The case of Samian Earth. Journal of Archaeological Science,57, 257–267.

    Google Scholar 

  100. Pourabolghasem, H., Ghorbanpour, M., & Shayegh, R. (2016). Antibacterial activity of copper-doped montmorillonite nanocomposites prepared by alkaline ion exchange method. Journal of Physical Science,27(2), 1–12.

    Google Scholar 

  101. Rautureau, M., Gomes, C. S. F., Liewig, N., & Katouzian-Safadi, M. (2010). Argiles et Santé: Propriétés et Thérapies. Lavoisier: Édition Médicales Internationale.

    Google Scholar 

  102. Rautureau, M., Gomes, C. S. F., Liewig, N., & Katouzian-Safadi, M. (2017). Clays and health: Properties and therapeutic uses. Cham: Springer.

    Google Scholar 

  103. Roques, C. F. (2015). Mud therapy: Data for clinical evidence. Balnea,10, 57–62.

    Google Scholar 

  104. Rossainz-Castro, L. G., De la Rosa-Gomez, I., Olguín, M. T., & Alcantara-Diaz, D. (2016). Comparison between silver-and copper-modified zeolite-rich tuffs as microbicidal agents for Escherichia coli and Candida albicans. Journal of Environmental Management,183, 763–770. https://doi.org/10.1016/j.jenvman.2016.09.034.

    CAS  Article  Google Scholar 

  105. Sandri, G., Bonferoni, M. C., Ferrari, F., Rossi, S., Aguzzi, C., Mori, M., et al. (2014). Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers,102, 970–977.

    CAS  Google Scholar 

  106. Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO, CaO) by conductimetric assay. Journal of Microbiological Methods,54, 177–182.

    CAS  Google Scholar 

  107. Sizaire, V., Nackers, F., Comte, E., & Portaels, F. (2006). Mycobacterium ulcerans infection: Control, diagnosis, and treatment. The Lancet Infectious Diseases,6(5), 288–296.

    Google Scholar 

  108. Svensson, S. L., Behroozian, S., Xu, W., Surette, M. G., Li, L., & Davies, J. (2017). Kisameet Glacial Clay: An unexpected source of bacterial diversity,8(3), e00590–17.

    Google Scholar 

  109. Syafawani, N., Nizam, N. A., & Chun, C. (2016). Antimicrobial activity of copper-kaolinite and surfactant modified copper-kaolinite against Gram-positive and Gram-negative bacteria. Jurnal Teknologi (Sciences nd Engineering),76(3–2), 127–132.

    Google Scholar 

  110. Tong, G., Yulong, M., Peng, G., & Zirong, X. (2005). Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Veterinary Microbiology,105, 113–122.

    CAS  Google Scholar 

  111. Top, A., & Ulku, S. (2004). Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Applied Clay Science,27, 13–19. https://doi.org/10.1016/j.clay.2003.12.002.

    CAS  Article  Google Scholar 

  112. Tuba, T. (2018). Antibacterial clay compositions for use as a topical ointment U.S. patent application no. 15/216,940. Washington, DC: U.S. Patent and Trademark Office.

  113. Unuabonah, E. I., Adewuji, A., Kolawole, M. O., Omovojie, M. O., Olatunde, O. C., Fayemi, S. O., et al. (2017a). Disinfection of wáter with new chitosan-modified hybrid clay composite absorbent. Heliyon,3, e00379.

    Google Scholar 

  114. Unuabonah, E. I., Kolawole, M. O., Agunbiade, F. O., Omorogie, M. O., Koko, D. T., Ugwuja, C. G., et al. (2017b). Novel metal-doped bacteriostatic hybrid clay composites for point-of-use disinfection of water. Journal of Environmental Chemical Engineering,5, 2128–2141.

    CAS  Google Scholar 

  115. Unuabonah, E. I., & Taubert, A. (2014). Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Applied Clay Science,99, 83–92.

    CAS  Google Scholar 

  116. Veniale, F., Bettero, A., Jobstraibizer, P., & Setti, M. (2007). Thermal muds: Perspectives of innovation. Applied Clay Science,36, 141–147.

    CAS  Google Scholar 

  117. Viseras, C., Carazo, E., Borrego-Sanchez, A., Garcia-Villen, F., Sánchez-Espejo, R., Cerezo, P., et al. (2019). Clay minerals in skin drug delivery. Clay and Clay Minerals. https://doi.org/10.1007/s42860-018-0003-7.

    Article  Google Scholar 

  118. Wang, X., Dong, H., Zeng, Q., Xia, Q., Zhang, L., & Zhou, Z. (2017). Reduced iron-containing clay minerals as antibacterial agents. Environmental Science and Technology,51, 2401–2408.

    Google Scholar 

  119. Williams, L. B. (2017). Geomimicry: Harnessing the antibacterial action of clays. Clay Minerals,52, 1–24.

    CAS  Google Scholar 

  120. Williams, L. B., & Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review,52, 745–770.

    Google Scholar 

  121. Williams, L. B., Haydel, S. E., & Ferrell, R. (2009). Bentonite, bandaids and borborygmi. Elements,5, 99–104.

    CAS  Google Scholar 

  122. Williams, L. B., Haydel, S. E., Giese, R., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French Green Clays used for healing. Clays and Clay Minerals,56, 437–452.

    CAS  Google Scholar 

  123. Williams, L. B., & Hillier, S. (2014). Kaolins and health: From first grade to first aid. Elements,10, 207–211.

    Google Scholar 

  124. Williams, L. B., Holland, M., Eberl, D. D., Brunet, T., & De Courrsou, L. B. (2004). Killer clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin,139, 3–8.

    Google Scholar 

  125. Williams, L. B., Metge, D., Eberl, D. D., Harvey, R., Turner, A., Prapaipong, P., et al. (2011). What makes natural clay antibacterial? Environmental Science and Technology,45, 3768–3773.

    CAS  Google Scholar 

  126. Wilson, M. J. (2003). Clay mineralogical and related characteristics of geophagic materials. Journal of Chemical Ecology,29, 1525–1547.

    CAS  Google Scholar 

  127. Xu, J., Campbell, J. M., Zhang, N., Hickey, W., & Sahai, N. (2012). Did mineral surface chemistry and toxicity contribute to evolution of microbial extracellular polymeric substances? Astrobiology,12(8), 785–798.

    CAS  Google Scholar 

  128. Ye, Y., Zhou, Y. H., Xia, M. S., Hu, C. H., & Ling, H. F. (2003). A new type of inorganic antibacterial material: Cu-bearing montmorillonite and discussion on its mechanism. Journal of Inorganic Materials,18, 569–574.

    CAS  Google Scholar 

  129. Young, S. L. (2011). Craving earth. New York: Columbia University Press.

    Google Scholar 

  130. Yuan, P., Tan, D., & Bergaya, F. (2015). Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Applied Clay Science,112–113, 75–93.

    Google Scholar 

  131. Yuen, J. W. M., Chung, T. W. K., & Loke, A. Y. (2015). Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant. International Journal of Environmental Research and Public Health,12, 3026–3041.

    CAS  Google Scholar 

  132. Zarate-Reyes, L., López-Pacheco, C., Nieto-Camacho, A., Apán, M. T. R., Palacios, E., López-Vidales, V., et al. (2017a). Naturally occurring layered-mineral magnesium as a bactericidal against Escherichia coli. Applied Clay Science,149, 87–96.

    CAS  Google Scholar 

  133. Zarate-Reyes, L., López-Pacheco, C., Nieto-Camacho, A., Palacios, E., López-Vidales, V., Kaufhold, S., et al. (2017b). Antibacterial clay against gram-negative antibiotic resistant bacteria. Journal Hazardous Materials,342, 625–632.

    Google Scholar 

  134. Zatta, P., Kiss, T., Suwalsky, M., & Berthon, G. (2002). Aluminium(III) as a promoter of cellular oxidation. Coordination Chemistry Reviews,228(2), 271–284.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marta Tacão and Isabel Henriques, staff members of CESAM and Department of Biology, University of Aveiro, 3800-193 Aveiro, Portugal, and of CESAM and Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal, respectively, for their contribution with regard to the microbiological studies of two Portuguese clays looking at any eventual bacteriostatic and bactericidal properties.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ferreira da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomes, C.F., Gomes, J.H. & da Silva, E.F. Bacteriostatic and bactericidal clays: an overview. Environ Geochem Health (2020). https://doi.org/10.1007/s10653-020-00628-w

Download citation

Keywords

  • Clay
  • Bacteriostatic
  • Bactericidal
  • Action mechanisms
  • Antimicrobial peloids
  • Ointments