Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India

Abstract

The aim of the study is to address the issues and associated health risks due to consumption of high-fluoride water supplied for drinking in a rural part of Shanmuganadhi River basin, Tamil Nadu, India. In this study, 61 groundwater samples were gathered from various tube and open wells and analysed for fluoride and other physicochemical parameters. The abundance of cations is Na+ > Ca2+ > Mg2+ > K+, and that of anions is HCO3 > SO42− > Cl > F. The fluoride concentration in drinking groundwater varied from 0.10 to 3.3 mg/l. According to the WHO standards, about 26% of the samples were unfit for drinking requirements (16 out of 61 samples) Water quality index (WQI) method was adopted to categorize the water into different classes to understand its suitability for drinking requirements. WQI signified that nearly 52% of the samples denoted poor, very poor and not suitable categories, whereas 48% of samples denoted good and excellent categories for consumption. Health risks associated with high-fluoride drinking water were assessed for various age groups of inhabitants such as children, teens and adults. The hazard quotient estimated based on the oral intake ranged from 0.00E+00 to 5.50E+00, from 0.00E+00 to 4.22E+00 and from 0.00E+00 to 3.45E+00 for children, teens and adults, respectively. It suggested that the health risks are associated with 75%, 59% and 43% of samples, respectively, among children, teens and adults. Therefore, children are more inclined towards risk than teens and adults in this region based on the intake of fluoride-rich drinking water. To improve the present scenario, groundwater should be either treated before drinking water supply or must be artificially recharged to lower the concentration of ions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abd El-Aziz, S. H. (2017). Evaluation of groundwater quality for drinking and irrigation purposes in the north-western area of Libya (Aligeelat). Environmental Earth Sciences. https://doi.org/10.1007/s12665-017-6421-3.

    Article  Google Scholar 

  2. Adimalla, N., & Qian, H. (2019a). Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicology and Environmental Safety,176, 153–161. https://doi.org/10.1016/j.ecoenv.2019.03.066.

    CAS  Article  Google Scholar 

  3. Adimalla, N., & Qian, H. (2019b). Hydrogeochemistry and fluoride contamination in the hard rock terrain of central Telangana, India: Analyses of its spatial distribution and health risk. SN Applied Sciences. https://doi.org/10.1007/s42452-019-0219-8.

    Article  Google Scholar 

  4. Alaya, M. B., Saidi, S., Zemni, T., & Zargouni, F. (2014). Suitability assessment of deep groundwater for drinking and irrigation use in the Djefara aquifers (Northern Gabes, south-eastern Tunisia). Environmental Earth Sciences,71, 3387–3421.

    Article  Google Scholar 

  5. Ali, S., Thakur, S. K., Sarkar, A., & Shekhar, S. (2016). Worldwide contamination of water by fluoride. Environmental Chemistry Letters,14(3), 291–315. https://doi.org/10.1007/s10311-016-0563-5.

    CAS  Article  Google Scholar 

  6. Anand, B., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Raneesh, K. Y. (2017). Prioritization of subwatersheds based on quantitative morphometric analysis in lower Bhavani basin, Tamil Nadu, India using DEM and GIS techniques. Arabian Journal of Geosciences,24(10), 1–18.

    Google Scholar 

  7. Anand, B., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Suresh, M. (2019). Long-term trend detection and spatiotemporal analysis of groundwater levels using GIS techniques in Lower Bhavani River basin, Tamil Nadu, India. Environment Development and Sustainability. https://doi.org/10.1007/s10668-019-00318.

    Article  Google Scholar 

  8. Apambire, W. B., Boyle, D. R., & Michel, F. A. (1997). Geochemistry, genesis and health implications of fluoriferous ground waters in the upper regions of Ghana. Environmental Geology,33, 13–24.

    CAS  Article  Google Scholar 

  9. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  10. APHA, Federation and WE and American Public Health Association (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington.

  11. Aravinthasamy, P., Karunanidhi, D., Subramani, T., Anand, B., Roy, P. D., & Srinivasamoorthy, K. (2019a). Fluoride contamination in groundwater of the Shanmuganadhi River Basin (south India) and its association with other chemical constituents using geographical information system and multivariate statistics. Geochemistry. https://doi.org/10.1016/j.chemer.2019.125555.

    Article  Google Scholar 

  12. Aravinthasamy, P., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Anand, B. (2019b). Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin South India: Implication on human health. Environmental Geochemistry and Health.. https://doi.org/10.1007/s10653-019-00452-x.

    Article  Google Scholar 

  13. Arya, S., & Subramani, T. (2015). Groundwater flow and fluctuation using GIS in a hard rock region, South India. Indian Journal of Geo-Marine Sciences,44(09), 1422–1427.

    Google Scholar 

  14. Arya, S., Vennila, G., & Subramani, T. (2018). Spatial and seasonal variation of groundwater levels in Vattamalaikarai River basin, Tamil Nadu, India—Study using GIS and GPS. Indian Journal of Geo-Marine Sciences,47(09), 1749–1753.

    Google Scholar 

  15. Arya, S., Subramani, T., Vennila, G., & Karunanidhi, D. (2019). Health risks associated with fluoride intake from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin, South India. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00489-y.

    Article  Google Scholar 

  16. Arya, S., Subramani, T., & Karunanidhi, D. (2020a). Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin South India. Environmental Earth Sciences,79, 102. https://doi.org/10.1007/s12665-020-8832-9.

    Article  Google Scholar 

  17. Arya, S., Subramani, T., Vennila, G., & Roy, P. D. (2020b). Groundwater vulnerability to pollution in the semi-arid Vattamalaikarai River Basin of south India thorough DRASTIC index evaluation. Geochemistry. https://doi.org/10.1016/j.chemer.2020.125635.

    Article  Google Scholar 

  18. Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: A review on the status and stress effects. Critical Reviews in Environmental Science and Technology,36(6), 433–487. https://doi.org/10.1080/10643380600678112.

    CAS  Article  Google Scholar 

  19. Batabyal, A. K., & Chakraborty, S. (2015). Hydrogeochemistry and water quality index in the assessment of groundwater quality for drinking uses. Water Environment Research,87(7), 607–617. https://doi.org/10.2175/106143015x14212658613956.

    CAS  Article  Google Scholar 

  20. Boateng, T. K., Opoku, F., Acquaah, S. O., & Akoto, O. (2016). Groundwater quality assessment using statistical approach and water quality index in Ejisu- Juaben municipality Ghana. Environmental Earth Sciences,75, 489. https://doi.org/10.1007/s12665-015-5105-0.

    CAS  Article  Google Scholar 

  21. Bouderbala, A. (2017). Assessment of water quality index for the groundwater in the upper Cheliff plain, Algeria. Journal of the Geological Society of India,90(3), 347–356. https://doi.org/10.1007/s12594-017-0723-7.

    CAS  Article  Google Scholar 

  22. Chandrajith, R., Padmasiri, J. P., Dissanayake, C. B., & Prematilaka, K. M. (2012). Spatial distribution of fluoride in groundwater of Sri Lanka. Journal of the National Science Foundation of Sri Lanka,40, 303–309.

    CAS  Article  Google Scholar 

  23. Chatterjee, R. (2010). Municipal solid waste management in kohim city-India. Iranian Journal of Environmental Health Science & Engineering,7(2), 173–180.

    CAS  Google Scholar 

  24. Craig, L., Stillings, L. L., Decker, D. L., & Thomas, J. M. (2015). Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana. Applied Geochemistry,56, 50–66.

    CAS  Article  Google Scholar 

  25. Duraisamy, S., Govindhaswamy, V., Duraisamy, K., Krishinaraj, S., Balasubramanian, A., & Thirumalaisamy, S. (2018). Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0183-z.

    Article  Google Scholar 

  26. Dzwairo, B., Hoko, Z., Love, D., & Guzha, E. (2006). Assessment of the impacts of pit latrines on groundwater quality in rural areas: A case study from Marondera district. Physics and Chemistry of the Earth,31, 779–788. https://doi.org/10.1016/j.pce.2006.08.031.

    Article  Google Scholar 

  27. Ganyaglo, S. Y., Gibrilla, A., Teye, E. M., Owusu-Ansah, E. D.-G. J., Tettey, S., Diabene, P. Y., et al. (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana. Chemosphere,233, 862–872.

    CAS  Article  Google Scholar 

  28. GSI. (1995). Geological and mineral map of Tamil Nadu and Pondicherry. Published by the Director General Geological Survey of India,1(500), 000.

    Google Scholar 

  29. He, S., & Wu, J. (2018). Hydrogeochemical characteristics, groundwater quality and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi County, northwest China. ExpoHealth. https://doi.org/10.1007/s12403-018-0289-7.

    Article  Google Scholar 

  30. He, X., Wu, J., & He, S. (2018). Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2018.1531693.

    Article  Google Scholar 

  31. Heikens, A., Sumarti, S., van Bergen, M., Widianarko, B., Fokkert, L., van Leeuwen, K., et al. (2005). The impact of the hyperacid Ijen Crater lake: Risks of excess fluoride to human health. Science of The Total Environment, 346(1–3), 56–69. https://doi.org/10.1016/j.scitotenv.2004.12.007.

    CAS  Article  Google Scholar 

  32. Hema, S., Subramani, T., & Elango, L. (2010). GIS study on vulnerability assessment of water quality in a part of Cauvery River. International Journal of Environmental Sciences,1(1), 1–17.

    CAS  Google Scholar 

  33. Jamshidzadeh, Z., & Barzi, M. T. (2018). Groundwater quality assessment using the potability water quality index (PWQI): A case in the Kashan plain Central Iran. Environmental Earth Sciences,77(3), 59. https://doi.org/10.1007/s12665-018-7237-5.

    CAS  Article  Google Scholar 

  34. Jia, H., Qian, H., Qu, W., Zheng, L., Feng, W., & Ren, W. (2019). Fluoride occurrence and human health risk in drinking water wells from Southern Edge of Chinese Loess Plateau. International Journal of Environmental Research and Public Health.,16(10), 1683. https://doi.org/10.3390/ijerph16101683.

    CAS  Article  Google Scholar 

  35. Karunanidhi, D., Vennila, G., Suresh, M., & Subramanian, S. K. (2013). Evaluation of the groundwater quality feasibility zones for irrigational purposes through GIS in Omalur Taluk, Salem District, South India. Environmental Science and Pollution Research,20(10), 7320–7333. https://doi.org/10.1007/s11356-013-1746-2.

    CAS  Article  Google Scholar 

  36. Karunanidhi, D., Aravinthasamy, P., Subramani, T., Roy, P. D., & Srinivasamoorthy, K. (2019a). Risk of fluoride-rich groundwater on human health: remediation through managed aquifer recharge in a hard rock terrain, South India. Natural Resources Research. https://doi.org/10.1007/s11053-019-09592-4.

    Article  Google Scholar 

  37. Karunanidhi, D., Aravinthasamy, P., Subramani, T., Wu, J., & Srinivasamoorthy, K. (2019b). Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River basin, South India. Human and Ecological Risk Assessment,25(1–2), 250–270. https://doi.org/10.1080/10807039.2019.1568859.

    CAS  Article  Google Scholar 

  38. Karunanidhi, D., Aravinthasamy, P., Deepali, M., Subramani, T., & Roy, P. D. (2020a). The effects of geochemical processes on groundwater chemistry and the health risks associated with fluoride intake in a semi-arid region of South India. RSC Advance,10, 4840. https://doi.org/10.1039/c9ra10332e.

    CAS  Article  Google Scholar 

  39. Karunanidhi, D., Aravinthasamy, P., Kumar, D., Subramani, T., & Roy, P. D. (2020b). Sobol sensitivity approach for the appraisal of geomedical health risks associated with oral intake and dermal pathways of groundwater fluoride in a semi-arid region of south India. Ecotoxicology and Environmental Safety,194(2020), 110438. https://doi.org/10.1016/j.ecoenv.2020.110438.

    CAS  Article  Google Scholar 

  40. Karunanidhi, D., Aravinthasamy, P., Roy, P. D., Praveenkumar, R. M., Prasanth, K., Selvapraveen, S., et al. (2020c). Evaluation of non-carcinogenic risks due to fluoride and nitrate contaminations in a groundwater of an urban part (Coimbatore region) of south India. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-8059-y.

    Article  Google Scholar 

  41. Kawo, N. S., & Karuppannan, S. (2018). Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences,147, 300–311. https://doi.org/10.1016/j.jafrearsci.2018.06.034.

    CAS  Article  Google Scholar 

  42. Kazakis, N., Mattas, C., Pavlou, A., Patrikaki, O., & Voudouris, K. (2017). Multivariate statistical analysis for the assessment of groundwater quality under different hydrogeological regimes. Environmental Earth Sciences. https://doi.org/10.1007/s12665-017-6665-y.

    Article  Google Scholar 

  43. Keshavarzi, B., Moore, F., Esmaeili, A., & Rastmanesh, F. (2010). The source of fluoride toxicity in Muteh area, Isfahan. Iran. Environmental Earth Sciences,61, 777–786.

    CAS  Article  Google Scholar 

  44. Khan, R., & Jhariya, D. C. (2017). Groundwater quality assessment for drinking purpose in Raipur city, Chhattisgarh using water quality index and geographic information system. Journal of the Geological Society of India,90, 69–76. https://doi.org/10.1007/s12594-017-0665-0.

    CAS  Article  Google Scholar 

  45. Li, C., Gao, X., & Wang, Y. (2015). Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Science of the Total Environment,508, 155–165.

    CAS  Article  Google Scholar 

  46. Li, P., He, X., Li, Y., & Xiang, G. (2018a). Occurrence and health implication of fluoride in groundwater of loess aquifers in the Chinese Loess Plateau: a case study of Tongchuan, northwest China. ExpoHealth. https://doi.org/10.1007/s12403-018-0278-x.

    Article  Google Scholar 

  47. Li, P., Wu, J., Tian, R., He, S., He, X., Xue, C., et al. (2018b). Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi coal Mine, northwest China. Mine Water and the Environment, 37(2), 222–237. https://doi.org/10.1007/s10230-017-0507-8.

    CAS  Article  Google Scholar 

  48. Mehdi, Q., Mansoureh, F., Maryam, M., Maryam, M., Sara, E., Ali, A., et al. (2020). Investigation of potential human health risks from fluoride and nitrate via water consumption in Sabzevar, Iran. International Journal of Environmenta Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1720668.

    Article  Google Scholar 

  49. Oruc, N. (2008). Occurrence and problems of high fluoride waters in Turkey: An overview. Environmental Geochemistry and Health,30, 315–323.

    CAS  Article  Google Scholar 

  50. Rabeiy, R. E. (2017). Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-8617-1.

    Article  Google Scholar 

  51. Ramya Priya, R., & Elango, L. (2017). Evaluation of geogenic and anthropogenic impacts on spatio-temporal variation in quality of surface water and groundwater along Cauvery River. Environmental Earth Sciences. https://doi.org/10.1007/s12665-017-7176-6.

    Article  Google Scholar 

  52. Rao, N. S., Rao, P. S., Reddy, G. V., Nagamani, M., Vidyasagar, G., & Satyanarayana, N. L. V. V. (2012). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh India. Environmental Monitoring and Assessment,184(8), 5189–5214. https://doi.org/10.1007/s10661-011-2333-y.

    CAS  Article  Google Scholar 

  53. Rees, H. L., Hyland, J. L., Hylland, K., Mercer Clarke, C. S. L., Roff, J. C., & Ware, S. (2008). Environmental indicators: Utility in meeting regulatory needs. An overview. ICES Journal of Marine Science,65, 1381–1386.

    Article  Google Scholar 

  54. Reza, R., & Singh, G. (2010). Assessment of groundwater quality status by using water quality index method in Orissa. India. World Applied Sciences Journal,9(12), 1392–1397.

    CAS  Google Scholar 

  55. Rezaei, H., Jafari, A., Kamarehie, B., Fakhri, Y., Ghaderpoury, A., Karami, M. A., et al. (2019). Health-risk assessment related to the fluoride, nitrate, and nitrite in the drinking water in the Sanandaj, Kurdistan County. Iran. Human and Ecological Risk Assessment, 25(5), 1242–1250.

    CAS  Article  Google Scholar 

  56. Saeid, S., Chizari, M., Sadighi, H., & Bijani, M. (2018). Assessment of agricultural groundwater users in Iran: A cultural environmental bias. Hydrogeological Journal,26(1), 285–295. https://doi.org/10.1007/s10040-017-1634-9.

    Article  Google Scholar 

  57. Shen, Y., Oki, T., Utsumi, N., Kanae, S., & Hanasaki, N. (2008). Projection of future world water resources under SRES scenarios: Water withdrawal. Hydrological Sciences J.,53, 11–33. https://doi.org/10.1623/hysj.53.1.11.

    Article  Google Scholar 

  58. Singaraja, C. (2015). GIS-based suitability measurement of groundwater resources for irrigation in Thoothukudi District, Tamil Nadu, India. Water Qual Expos Health,7, 389–405. https://doi.org/10.1007/s12403-015-0159-5.

    CAS  Article  Google Scholar 

  59. Singaraja, C. (2017). Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu. India. Applied Water Science,7(5), 2157–2173. https://doi.org/10.1007/s13201-017-0594-5.

    CAS  Article  Google Scholar 

  60. SubbaRao, N., Marghade, D., Dinakar, A., Chandana, I., Sunitha, B., Ravindra, B., et al. (2017). Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environmental Earth Scienceshttps://doi.org/10.1007/s12665-017-7093-8.

    Article  Google Scholar 

  61. Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and suitability for drinking and agricultural in Chithar river basin, Tamil Nadu, India. Environmental Geology,47, 1099–1110.

    CAS  Article  Google Scholar 

  62. Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region. Southern India. Environmental Monitoring and Assessment,162(1–4), 123–137. https://doi.org/10.1007/s10661-009-0781-4.

    CAS  Article  Google Scholar 

  63. Subramani, T., Babu, S., & Elango, L. (2012). Computation of groundwater resources and recharge in Chithar River basin South India. Environmental Monitoring and Assessment,185(1), 983–994. https://doi.org/10.1007/s10661-012-2608-y.

    CAS  Article  Google Scholar 

  64. Subramani, T., Anandakumar, S., Kannan, R., & Elango, L. (2013). Identification of major hydrogeochemical processes in a hard rock terrain by NETPATH modeling. Book on Earth Resources and Environment,29, 365–370.

    Google Scholar 

  65. Thilagavathi, N., Subramani, T., & Suresh, M. (2015). Land use/land cover change detection analysis in Salem Chalk hills, South India using remote sensing and GIS. Disaster Advance, 8, 44–52.

    Google Scholar 

  66. Thivya, C., Chidambaram, S., Rao, M. S., Thilagavathi, R., Prasanna, M. V., & Manikandan, S. (2015). Assessment of fluoride contaminations in groundwater of hard rock aquifers in Madurai district Tamil Nadu (India). https://doi.org/10.1007/s13201-015-0312-0.

    Article  Google Scholar 

  67. United Nations Environment Program (UNEP). (1999). Global environment outlook 2000. UK: Earthscan.

    Google Scholar 

  68. USEPA. (2006). USEPA Region III Risk-based Concentration Table: Technical Background Information. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  69. USEPA. (2014). Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors-OSWER Directive 9200, (pp. 1–120)

  70. Varol, S., & Davraz, A. (2014). Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences,73(4), 1725–1744. https://doi.org/10.1007/s12665-014-3531-z.

    CAS  Article  Google Scholar 

  71. Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., et al. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment,171(1–4), 595–609. https://doi.org/10.1007/s10661-009-1302-1.

    CAS  Article  Google Scholar 

  72. Vennila, G., Subramani, T., & Elango, L. (2008). GIS based groundwater quality assessment of Vattamalaikarai Basin, Tamil Nadu, India. Nature Environment Pollution Technology,7, 585–592.

    CAS  Google Scholar 

  73. Verma, D. K., Bhunia, G. S., Shit, P. K., & Tiwari, A. K. (2018). Assessment of groundwater quality of the central Gangetic Plain area of India using geospatial and WQI Techniques. Journal of the Geological Society of India, 92(6), 743–752. https://doi.org/10.1007/s12594-018-1097-1.

    CAS  Article  Google Scholar 

  74. WHO. (2008). World Health Organisation Guidelines for Drinking Water Quality, third ed. pp. 20 Avenue Appia, 1211 Geneva 27, Switzerland.

  75. WHO. (2011). World Health Organisation Guidelines for Drinking Water Quality, 4rd ed. Incorporating the First and Second Addenda, vol. 1 Recommendation, Geneva.

  76. World health statistics (2017). Monitoring health for the SDGs, Sustainable Development Goals. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO.

  77. Wu, J., Li, P., & Qian, H. (2015). Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environmental Earth Sciences,73(12), 8575–8588. https://doi.org/10.1007/s12665-015-4018-2.

    CAS  Article  Google Scholar 

  78. Wu, J., Xue, C., Tian, R., & Wang, S. (2017). Lake water quality assessment: A case study of Shahu Lake in the semi-arid loess area of northwest China. Environmental Earth Sciences,76, 232. https://doi.org/10.1007/s12665-017-6516-x.

    CAS  Article  Google Scholar 

  79. Yang, S., Yang, Q., Ma, H., Liang, J., Niu, C., & Martin, J. D. (2018). Health risk assessment of phreatic water based on triangular fuzzy theory in Yinchuan plain. Ecotoxicology and Environmental Safety,164, 732–738. https://doi.org/10.1016/j.ecoenv.2018.08.036.

    CAS  Article  Google Scholar 

  80. Zhang, L., Huang, D., Yang, J., Wei, X., Qin, J., Ou, S., et al. (2017). Probabilistic risk assessment of Chinese residents exposure to fluoride in improved drinking water in endemic fluorosis areas. Environmental Pollution,222, 118–125. https://doi.org/10.1016/j.envpol.2016.12.074.

    CAS  Article  Google Scholar 

  81. Zhang, Y., Wu, J., & Xu, B. (2018). Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences.,77, 273. https://doi.org/10.1007/s12665-018-7456-9.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (File. No: ECR/2017/000132 dated 18.07.2017), released the required funds to execute this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Karunanidhi.

Ethics declarations

Conflict of interest

The author declares that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karunanidhi, D., Aravinthasamy, P., Subramani, T. et al. Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India. Environ Geochem Health (2020). https://doi.org/10.1007/s10653-020-00613-3

Download citation

Keywords

  • Drinking water
  • Water quality index (WQI)
  • Hazard quotient (HQ)
  • Children
  • Shanmuganadhi River basin
  • South India