Evaluation of possible impact on human health of atmospheric mercury emanations from the Popocatépetl volcano

Abstract

The contribution of Hg from volcanic emanations is decisive for assessing global mercury emissions given the impact of this highly toxic contaminant on human health and ecosystems. Atmospheric Hg emissions from Popocatépetl volcano and their dispersion were evaluated carrying out two gaseous elemental mercury (GEM) surveys during a period of intense volcanic activity. Continuous GEM measurements were taken for 24 h using a portable mercury vapor analyzer (Lumex RA-915M) at the Altzomoni Atmospheric Observatory (AAO), 11 km from the crater. In addition, a long-distance survey to measure GEM was conducted during an automobile transect around the volcano, covering a distance of 129 km. The evaluation of the GEM data registered in the fixed location showed that heightened volcanic activity clearly intensifies the concentration of atmospheric Hg, extreme values around 5 ng m−3. Highest concentrations of GEM recorded during the mobile survey were about 10 ng m−3. In both surveys, the recorded concentrations during most of the measurement time were below 2 ng m−3, but measurements were taken at a considerable distance from the crater, and GEM is subject to dilution processes. During both surveys, recorded GEM did not exceed the 200 ng m−3 concentration recommended by the WHO (Air quality guidelines for Europe, 2000) as the regulatory limits for Hg in the atmospheric environment for long-term inhalation. Because this study was carried out in inhabited areas around the volcano during a period of intense volcanic activity, it can be concluded that the Popocatépetl does not represent a risk to human health in terms of Hg.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aiuppa, A., Bagnato, E., Witt, M. L. I., Mather, T. A., Parello, F., Pyle, D. M., et al. (2007). Real-time simultaneous detection of volcanic Hg ans SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophysical Research Letters,34, L21307. https://doi.org/10.1029/2007GL030762.

    CAS  Article  Google Scholar 

  2. Alatorre-Ibargüengoitia, M. A., Arciniega-Ceballos, A., López, C. L., Dingwell, D. B., & Delgado-Granados, H. (2019). Fragmentation behavior of eruptive products of Popocatépetl volcano: An experimental contribution. Geofísica Internacional,58(1), 49–72.

    Google Scholar 

  3. Alatorre-Ibargüengoitia, M. A., Morales-Iglesias, H., Ramos-Hernández, S. G., Jon-Selvas, J., & Jiménez-Aguilar, J. M. (2016). Hazard zoning for volcanic ballistic impacts at El Chichón Volcano (Mexico). Natural Hazards,81(3), 1733–1744. https://doi.org/10.1007/s11069-016-2152-0.

    Article  Google Scholar 

  4. Armienta, M. A., Cruz-Reyna, S., Cruz, O., Ceniceros, N., Aguayo, A., & Marin, M. (2011). Fluoride in ash leachates: Environmental implications at Popocatépetl volcano, central Mexico. Natural Hazards and Earth System Sciences,11(7), 1949–1956. https://doi.org/10.5194/nhess-11-1949-2011.

    Article  Google Scholar 

  5. ATSDR. (1997). National alert: A warning about continuing patterns of metallic mercury exposure. Agency for Toxic Substances and Disease Registry. https://www.cdc.gov/media/pressrel/mercury.htm.

  6. Bagnato, E., Aiuppa, A., Parello, F., Allard, P., Shinohara, H., Liuzzo, M., et al. (2011). New clues on the contribution of Earth’s volcanism to the global mercury cycle. Bulletin of Vulcanology,73, 497–510. https://doi.org/10.1007/s00445-010-0419-y.

    Article  Google Scholar 

  7. Bagnato, E., Aiuppa, A., Parello, F., Calabrese, S., Dalessandro, W., Mather, T. A., et al. (2007). Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmospheric Environment,41, 7377–7388. https://doi.org/10.1016/j.atmosenv.2007.05.060.

    CAS  Article  Google Scholar 

  8. Bagnato, E., Barra, M., Cardellini, C., Chiodini, G., Parello, F., & Sprovieri, S. (2014). First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): Mapping and quantification of gas release. Journal of Volcanology and Geothermal Research,289, 26–40. https://doi.org/10.1016/j.jvolgeores.2014.10.017.

    CAS  Article  Google Scholar 

  9. Barquero, J. I., Rojas, S., Esbrí, J. M., García-Noguero, E. M., & Higueras, P. (2017). Factors influencing mercury uptake by leaves of stone pine (Pinuspinea L.) in Almadén, (Central Spain). Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-0446-8.

    Article  Google Scholar 

  10. Cherian, M. G., Hursh, J. B., Clarkson, T. W., & Allen, J. (1978). Radioactive Mercury distribution in biological fluids and excretion in human subjects after inhalation of Mercury vapor. Archives of environmental health. An International Journal, 3, 109–114. https://doi.org/10.1080/00039896.1978.10667318.

    Google Scholar 

  11. Elinder, C. G., Gerhardsson, L., & Oberdoerster, G. (1988). Biological Monitoring of Toxic Metals—Overview. In T. W. Clarkson, L. Friberg, G. F. Nordberg, & P. R. Sager (Eds.), Biological monitoring of toxic metals., Rochester Series on Environmental Toxicity Boston: Springer.

    Google Scholar 

  12. Engle, M. A., Gustin, M. S., & Zhang, H. (2001). Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA. Atmospheric Environment, 35, 3987–3997. https://doi.org/10.1016/S1352-2310(01)00184-4.

    CAS  Article  Google Scholar 

  13. Ferrara, R., Mazzolai, B., Edner, H., Svanberg, S., & Wallinder, E. (1998). Atmospheric mercury sources in the Mt. Amiata area, Italy. Science of the Total Environment,213, 13–23. https://doi.org/10.1016/S0048-9697(98)00067-9.

    CAS  Article  Google Scholar 

  14. Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., & Pirrone, N. (2000). Volcanoes as emission sources of atmopsheric mercury in the Mediterranean basin. Science of Total Environment,259, 115–121. https://doi.org/10.1016/S0048-9697(00)00558-1.

    CAS  Article  Google Scholar 

  15. Ferrari, L., Orozco-Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics,522–523, 122–149. https://doi.org/10.1016/j.tecto.2011.09.018.

    Article  Google Scholar 

  16. Fickel, M., & Delgado, G. H. (2017). On the use of different spectral windows in DOAS evaluations: Effects on the estimation of SO2 emission rate and mixing ratios during strong emission of Popocatépetl volcano. Chemical Geology, 462, 67–73. https://doi.org/10.1016/j.chemgeo.2017.05.001.

  17. Fu, X. W., Feng, X. B., Qiu, G. L., Shang, L. H., & Zhang, H. (2011). Speciated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment,45(4205–4212), 2011. https://doi.org/10.1016/j.atmosenv.2011.05.012.

    CAS  Article  Google Scholar 

  18. Gustin, M. S., Taylor, J. G. E., & Maxey, M. A. (1997). Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere. Journal of Geophysical Research: Atmospheres, 102, 3891–3898. https://doi.org/10.1029/96JD02742.

    CAS  Article  Google Scholar 

  19. Higueras, P., Esbrí, J. M., Oyarzun, R., Llanos, W., Martínez-Coronado, A., Lillo, J., et al. (2013). Industrial and natural sources of gaseous elemental mercury in the Almadén district (Spain): An updated report on this issue after the ceasing of mining and metallurgical activities in 2003 and major land reclamation works. Environmental Research,125, 197–208. https://doi.org/10.1016/j.envres.2012.10.011.

    CAS  Article  Google Scholar 

  20. Higueras, P. L., Amorós, J. A., Esbrí, J. M., Pérez-de-los-Reyes, C., López-Berdonces, M. A., & García-Navarro, F. J. (2016). Mercury transfer from soil to olive trees. A comparison of three different contaminated sites. Environmental Science and Pollution Research, 23, 6055–6061. https://doi.org/10.1007/s11356-015-4357-2.

    CAS  Article  Google Scholar 

  21. Higueras, P., Oyarzun, R., et al. (2014). A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: Separating fads from facts. Environmental Geochemistry and Health,36, 713–734. https://doi.org/10.1007/s10653-013-9591-2.

    CAS  Article  Google Scholar 

  22. Inguaggiato, S., Martin-Del Pozzo, A. L., Aguayo, A., Capasso, G., & Favara, R. (2005). Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): Evidence of gas–water interaction between magmatic component and shallow fluids. Journal of Volcanology and Geothermal Research,141, 91–108. https://doi.org/10.1016/j.jvolgeores.2004.09.006.

    CAS  Article  Google Scholar 

  23. Lanzillotta, E., Nucaro, E., & Pirrone, N. (2000). Volcanoes as emission source of atmospheric mercury in the Mediterranean basin. Science of the Total Environment,259, 115–121. https://doi.org/10.1016/S0048-9697(00)00558-1.

    Article  Google Scholar 

  24. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., et al. (2007). A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. AMBIO: A Journal of the Human Environment,36(1), 19–33. https://doi.org/10.1579/0044-7447(2007)36%5b19:ASOPAU%5d2.0.CO;2.

    CAS  Article  Google Scholar 

  25. Lindqvist, O., & Rodhe, H. (1985). Atmospheric mercury—A review. Tellus,27B, 136–159. https://doi.org/10.1111/j.1600-0889.1985.tb00062.x.

    Article  Google Scholar 

  26. Martin, R. S., Witt, M. L. I., Pyle, D. M., Mather, T. A., Watt, S. F. L., Bagnato, E., et al. (2011). Rapid oxidation of mercury (Hg) at volcanic vents: Insights from high temperature thermodynamic models of Mt Etna’s emissions. Chemical Geology,283(2011), 279–286. https://doi.org/10.1016/j.chemgeo.2011.01.027.

    CAS  Article  Google Scholar 

  27. Martínez-Coronado, A., Oyarzun, R., Esbrí, J. M., Llanos, W., & Higueras, P. (2011). Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): The old metallurgical precinct (1794 to 1861 AD) and surrounding areas. Journal of Geochemical Exploration,109, 70–77. https://doi.org/10.1016/j.gexplo.2010.04.007.

    CAS  Article  Google Scholar 

  28. Mendoza-Rosas, A. T., & De la Cruz-Reyna, S. (2019). Hazard assessment of the ongoing lava dome eruption at Popocatépetl volcano from the statistical analysis of significant explosive events in the period of 1997 to 2016. Geofísica internacional,58(1), 33–48.

    Google Scholar 

  29. Mendoza-Rosas, A. T., Gómez-Vázquez, Á., & De la Cruz-Reyna, S. (2017). Statistical analysis of the sustained lava dome emplacement and destruction processes at Popocatépetl volcano, Central México. Bulletin of volcanology,79(6), 43. https://doi.org/10.1007/s00445-017-1127-7.

    Article  Google Scholar 

  30. Nriagu, J., & Becker, C. (2003). Volcanic emissions of mercury to the atmosphere: Global and regional inventories. The Science of the Total Environment,304, 3–12. https://doi.org/10.1016/S0048-9697(02)00552-1.

    CAS  Article  Google Scholar 

  31. Park, J. D., & Zheng, W. (2012). Human exposure and health effects of inorganic and elemental mercury. Journal of Preventive Medicine and Public Health Yebang Uihakhoe Chi,45(6), 344–352. https://doi.org/10.3961/jpmph.2012.45.6.344.

    Article  Google Scholar 

  32. Pyle, D. M., & Mather, T. A. (2003). The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment,37, 5115–5124. https://doi.org/10.1016/j.atmosenv.2003.07.011.

    CAS  Article  Google Scholar 

  33. Rice, K. M., Walker, E. M., Jr., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health Yebang Uihakhoe chi,47(2), 74–83. https://doi.org/10.3961/jpmph.2014.47.2.74.

    Article  Google Scholar 

  34. Risher, J. F., Nickle, R. A., & Amler, S. N. (2003). Elemental mercury poisoning in occupational and residential settings. International Journal of Hygiene and Environmental Health,206, 371–379. https://doi.org/10.1078/1438-4639-00233.

    CAS  Article  Google Scholar 

  35. Rojas-Ramos, M., Catalan-Vazquez, M., Martin-Del Pozzo, A. L., Garcia-Ojeda, E., Villalba-Caloca, J., & Perez-Neria, J. (2001). A seven months prospective study of the respiratory effects of exposure to ash from Popocatepetl volcano, Mexico. Environmental Geochemistry and Health,23(4), 379–392. https://doi.org/10.1023/A:1012244311557.

    Article  Google Scholar 

  36. Schiavo, B., Stremme, W., Grutter, M., Campion, R., Guarin, C. A., Rivera, C., et al. (2019). Characterization of a UV camera system for SO2 measurements from Popocatépetl Volcano. Journal of Volcanology and Geothermal Research,370, 82–94. https://doi.org/10.1016/j.jvolgeores.2018.09.001.

    CAS  Article  Google Scholar 

  37. Schiavo, B., Morton-Bermea, O., Salgado-Martinez, E., Arellano, J., & Hernández-Álvarez, E. (2020). Estimates of mercury flux and temporal variability of Hg/SO2 ratio in the plume of Popocatépetl volcano (Mexico). Journal of South American Earth Sciences, 101, 102614. https://doi.org/10.1016/j.jsames.2020.102614.

    CAS  Article  Google Scholar 

  38. Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury-An overview. Atmospheric Environment,32(5), 809–822. https://doi.org/10.1016/S1352-2310(97)00293-8.

    CAS  Article  Google Scholar 

  39. Shruti, V. C., Rodríguez-Espinosa, P. F., Martinez-Tavera, E., & Hernández-Gonzalez, D. (2018). Metal concentrations in recent ash fall of Popocatepetl volcano 2016, Central Mexico: Is human health at risk? Ecotoxicology and Environmental Safety,162, 324–333. https://doi.org/10.1016/j.ecoenv.2018.06.067.

    CAS  Article  Google Scholar 

  40. Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., & Stroganov, A. (2004). Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Processing Technology. Fuel Processing Technology, 85, 473–485. https://doi.org/10.1016/j.fuproc.2003.11.003.

    CAS  Article  Google Scholar 

  41. Siebe, C., & Macías, J. L. (2006). Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin Volcanic Field. Special Papers-Geological Society of America,402, 253. https://doi.org/10.1130/2004.VHITMC.SP402.

    Article  Google Scholar 

  42. Sillman, S., Marsik, F. J., Al-Wali, K. I., Keeler, G. J., & Landis, M. S. (2007). Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern United States, and the Atlantic Ocean. Journal Geophysical Research,112, D23305. https://doi.org/10.1029/2006JD008227.

    CAS  Article  Google Scholar 

  43. Sizmur, T., McArthur, G., Risk, D., Tordon, R., & O’Driscoll, N. J. (2017). Gaseous mercury flux from salt marshes is mediated by solar radiation and temperature. Atmospheric Environment, 153, 117–125. https://doi.org/10.1016/j.atmosenv.2017.01.024.

    CAS  Article  Google Scholar 

  44. Slemr, F., Schuster, G., & Seiler, W. (1985). Distribution, speciation, and budget of atmospheric mercury. Journal of Atmospheric Chemistry,3(4), 407–434. https://doi.org/10.1007/BF00053870.

    CAS  Article  Google Scholar 

  45. Slemr, F., Seiler, W., & Schuster, G. (1981). Latitudinal distribution of Mercury over the Atlantic Ocean. Journal of Geophysical Research,86, 1159–1166. https://doi.org/10.1029/JC086iC02p01159.

    CAS  Article  Google Scholar 

  46. Sprovieri, F., & Pirrone, N. (2008). Spatial and temporal distribution of atmospheric mercury species over the Adriatic Sea. Environmental Fluid Mechanics, 8, 117–128. https://doi.org/10.1007/s10652-007-9045-4.

    CAS  Article  Google Scholar 

  47. Sprovieri, F., Pirrone, N., Gardfeldt, K., & Sommar, J. (2003). Mercury speciation in the marine boundary layer along a 6000 km cruise path around the Mediterranean Sea. Atmospheric Environment, 37, 63–71. https://doi.org/10.1016/S1352-2310(03)00237-1.

    CAS  Article  Google Scholar 

  48. Sprovieri, F., Hedgcock, I. M., & Pirrone, N. (2010). An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer. Atmospheric Chemistry and Physics, 10, 3985–3997. https://doi.org/10.5194/acp-10-3985-2010.

    CAS  Article  Google Scholar 

  49. Stremme, W., Ortega, I., Siebe, C., & Grutter, M. (2011). Gas composition of Popocatépetl Volcano between 2007 and 2008: FTIR spectroscopic measurements of an explosive event and during quiescent degassing. Earth and Planetary Science Letters,301(3–4), 502–510. https://doi.org/10.1016/j.epsl.2010.11.032.

    CAS  Article  Google Scholar 

  50. Stremme, W., Krueger, A., Harig, R., & Grutter, M. (2012). Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 1: slant-columns and their ratios. Atmospheric Measurement Techniques, 5, 275–288. https://doi.org/10.5194/amt-5-275-2012.

  51. Taquet, N., Stremme, W., Grutter, M., Baylón, J., Bezanilla, A., Schiavo, B., et al. (2019). Variability in the gas composition of the Popocatépetl Volcanic Plume. Frontiers in Earth Science,7, 114. https://doi.org/10.3389/feart.2019.00114.

    Article  Google Scholar 

  52. Tejero, J., Higueras, P. L., Garrido, I., Esbrí, J. M., Oyarzun, R., & Español, S. (2015). An estimation of mercury concentrations in the local atmosphere of Almadén (Ciudad Real Province, South Central Spain) during the twentieth century. Environmental Science and Pollution Research, 22, 4833–4841. https://doi.org/10.1007/s11356-014-2860-5.

    CAS  Article  Google Scholar 

  53. Travnickov, O. (2005). Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere. Atmospheric Environment, 39, 7541–7548. https://doi.org/10.1016/j.atmosenv.2005.07.066.

    CAS  Article  Google Scholar 

  54. Tomiyasu, T., Nagano, A., Sakamoto, H., & Yonehara, N. (2000). Background levels of atmospheric mercury in Kagoshima City, and influence of mercury emission from Sakurajima Volcano, Southern Kyushu, Japan. Science of the Total Environment,259(1–3), 231–237. https://doi.org/10.1016/s0048-9697(00)00585-4.

    CAS  Article  Google Scholar 

  55. UNEP—United Nations Environment Programme Chemicals. (2002). Global mercury assessment. Geneva, 2002. https://wedocs.unep.org/bitstream/handle/20.500.11822/27579/GMA2018.pdf?sequence=1&isAllowed=y

  56. U.S. EPA. (2011). Exposure factors handbook 2011 Edition (final report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011.

  57. Varekamp, C. J., & Buseck, P. R. (1986). Global mercury flux from volcanic and geothermal sources. Applied Geochemistry, 1(1), 65–73. https://doi.org/10.1016/0883-2927(86)90038-7.

    CAS  Article  Google Scholar 

  58. Vaselli, O., Higueras, P., Nisi, B., Esbrí, J. M., Cabassi, J., Martínez-Coronado, A., et al. (2013). Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): A geochemical survey prior the reclamation project. Environmental Research,125, 179–187. https://doi.org/10.1016/j.envres.2012.12.010.

    CAS  Article  Google Scholar 

  59. Von Glasow, R. (2010). Atmospheric chemistry in volcanic plumes. PNAS,107, 6594–6599. https://doi.org/10.1073/pnas.0913164107.

    Article  Google Scholar 

  60. Witt, M. L. I., Mather, T. A., Pyle, D. M., Aiuppa, A., Bagnato, E., & Tsanev, V. I. (2008). Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. Journal of Geophysical Research: Solid Earth, 113, B06203. https://doi.org/10.1029/2007JB005401.

    CAS  Article  Google Scholar 

  61. WHO. (2000). Air quality guidelines for Europe (2nd ed., Vol. 91, pp. 157–162)., European Series Geneva: WHO Regional Publications.

    Google Scholar 

Download references

Acknowledgements

We thank the RUOA (Red Universitaria de Observatorios Atmosféricos) for meteorological data. Lumex RA-915M mercury vapor analyzer was purchased with the financial support of the Project 268074 GEMEX Cooperación Mexico-Europa para la investigación de sistemas geotérmicos mejorados y sistemas geotérmicos super calientes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Schiavo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schiavo, B., Morton-Bermea, O., Salgado-Martinez, E. et al. Evaluation of possible impact on human health of atmospheric mercury emanations from the Popocatépetl volcano. Environ Geochem Health (2020). https://doi.org/10.1007/s10653-020-00610-6

Download citation

Keywords

  • Atmospheric mercury
  • GEM
  • Popocatépetl volcano
  • Air pollutant