Extremely high concentrations of zinc in birch tree leaves collected in Chelyabinsk, Russia

Abstract

Zinc is an essential trace element and a vital microelement for human health. Zinc can be toxic when exposures exceed physiological needs. Toxic effects in humans are most evident from inhalation exposure to high concentrations of Zn compounds. Urban air pollution can be especially dangerous due to the Zn content in airborne dust. Tree leaves can absorb significant levels of zinc. In this study, leaf deposition of Zn was investigated in Chelyabinsk, Russia. Russian zinc production plant and metallurgical plant are located in Chelyabinsk. Extremely high concentrations of Zn (316–4000 mg kg−1) were found in the leaves of birch trees. It is well known that traffic also is Zn source in an urban environment. Trees, growing at the different distances from zinc production and metallurgical plants and road to identify the contribution of each source (road or industry), were studied. Through SEM analysis, the prevalence of small particulates (PM10 and less), containing Zn, illustrated leaf Zn deposition from the air by passing root accumulation. It was shown that emission of zinc production plant and the metallurgical plant is the main source of leaf Zn deposition in Chelyabinsk.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahsin, M., Hussain, S., Rengel, Z., & Amir, M. (2019). Zinc status and its requirement by rural adults consuming wheat from control or zinc-treated fields. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00463-8.

    Article  Google Scholar 

  2. Aksoy, A., Hale, W. H. G., & Dixon, J. M. (1999). Capsella bursa-pastoris (L.) Medic. as a biomonitor of heavy metals. Science of the Total Environment,226(2–3), 177–186.

    CAS  Article  Google Scholar 

  3. Aksoy, A., Sahin, U., & Duaman, F. (2000). Robinia pseudo-acacia L. as a possible biomonitor of heavy metal pollution in Kayseri. Turkish Journal of Botany,24, 279–284.

    Google Scholar 

  4. Al-Khashman, O. A., Al-Muhtaseb, A. H., & Ibrahim, K. A. (2011). Date palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments. Environmental Pollution,159, 1635–1640.

    CAS  Article  Google Scholar 

  5. Altieri, K. E., & Keen, S. L. (2019). Public health benefits of reducing exposure to ambient fine particulate matter in South Africa. Science of the Total Environment,684, 610–620.

    CAS  Article  Google Scholar 

  6. Apeagyei, E., Bank, M. S., & Spengler, J. D. (2011). Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmospheric Environment,45(13), 2310–2323.

    CAS  Article  Google Scholar 

  7. Asgari, K., & Amini, H. (2011). Biomonitoring of trace element in air and soil pollution by using Acacia. Journal of Research in Agricultural Science,7(2), 115–124.

    Google Scholar 

  8. Ayanlade, A., & Oyegbade, E. (2016). Influences of wind speed and direction on atmospheric particle concentrations and industrially induced noise. SpringerPlus,5(1), 1898.

    Article  CAS  Google Scholar 

  9. Bargagli, R., Monaci, F., Borghini, F., Bravi, F., & Agnorelli, C. (2002). Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmeliacaperata in a former mining district in Italy. Environmental Pollution,116(2), 279–287.

    CAS  Article  Google Scholar 

  10. Berlyand, M. E. (1991). Prediction and regulation of air pollution. Berlin: Springer.

    Google Scholar 

  11. Bi, C. (2017). Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Science of the Total Environment,619–620, 1346–1357.

    Google Scholar 

  12. Bi, X. Y., Liang, S. Y., & Li, X. D. (2013). Trace metals in soil, dust, and tree leaves of the urban environment, Guangzhou, China. Chinese Science Bulletin,58, 222–230.

    CAS  Article  Google Scholar 

  13. Bi, Ch., Zhou, Y., Chen, Z., Jia, J., & Bao, X. (2018). Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Science of the Total Environment,619–620, 1349–1357.

    Article  CAS  Google Scholar 

  14. Bing, H., Wu, Y., Zhou, J., & Sun, H. (2013). Biomonitoring trace metal contamination by seven sympatric alpine species in Eastern Tibetan Plateau. Chemosphere,165, 388–398.

    Article  CAS  Google Scholar 

  15. Bolshunova, T., Rikhvanov, L., Mezhibor, A., Zhornyak, L., Baranovskaya, N., & Eremina, E. (2018). Biogeochemical characteristics of epiphitic lichen Lobaria pulmonaria of the Barguzin nature reserve (The republic of Buryatia, Russia). Journal of Environmental Engineering and Landscape Management,26(2), 120–127.

    Article  Google Scholar 

  16. Boulamanti, A., & Moya, J. A. (2016). Production costs of the non-ferrous metals in the EU and other countries: Copper and zinc. Resources Policy,49, 112–118.

    Article  Google Scholar 

  17. Brown, K., Wuehler, S., & Peerson, J. (2001). The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food & Nutrition Bulletin,22, 113–125.

    Article  Google Scholar 

  18. Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope Iii, C. A., et al. (2018). Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America,115(38), 9592–9597.

    CAS  Article  Google Scholar 

  19. Caldelas, C., & Weiss, D. J. (2017). Zinc Homeostasis and isotopic fractionation in plants: A review. Plant and Soil,411(1–2), 17–46.

    CAS  Article  Google Scholar 

  20. Cataldo, D. A., & Wildung, R. E. (1978). Soil and plant factors influencing the accumulation of heavy metals by plants. Environmental Health Perspectives,27, 149–159.

    CAS  Article  Google Scholar 

  21. Catinon, M., Ayrault, S., Clocchiatti, R., Boudouma, O., Asta, J., Tissut, M., et al. (2009). The anthropogenic atmospheric elements fraction: A new interpretation of elemental deposits on tree barks. Atmospheric Environment,43(5), 1124–1130.

    CAS  Article  Google Scholar 

  22. Celik, M. B., & Kadi, I. (2007). The relation between meteorological factors and pollutants concentration in Karabuk city. Gazi University Journal of Science,20, 87–95.

    Google Scholar 

  23. Çelik, A., Kartal, A. A., Akdoǧan, A., & Kaska, Y. (2005). Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Environment International,31(1), 105–112.

    Article  CAS  Google Scholar 

  24. Chelyabinsk: Encycl. (2001) Chelyabinsk: Stone bel (Rus).

  25. Chen, X., & Lu, X. (2018). Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi’an city, China. Ecotoxicology and Environmental Safety,151, 153–160.

    CAS  Article  Google Scholar 

  26. Chiroma, T. M., Ebewele, R. O., & Hymore, F. K. (2014). Comparative assessement of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. International Refereed Journal of Engineering and Science,3(2), 01–09.

    Google Scholar 

  27. Chrzan, A. (2014). Necrotic bark of common pine (Pinus sylvestris L.) as a bioindicator of environmental quality. Environmental Science and Pollution Research,2(22), 1066–1071.

    Google Scholar 

  28. Comprehensive report on the state of the environment of the Chelyabinsk region in 2016 (2017) Chelyabinsk (Rus)

  29. Coskun, M., Steinnes, E., Coskun, M., & Cayir, A. (2009). Comparison of epigeic moss (Hypnum cupressiforme) and lichen (Cladoniarangiformis) as biomonitor species of atmospheric metal deposition. Bulletin of Environmental Contamination and Toxicology,82(1), 1–5.

    CAS  Article  Google Scholar 

  30. Councell, T. B., Duckenfield, K. U., Landa, E. R., & Callender, E. (2004). Tire-wear particles as a source of zinc to the environment. Environmental Science and Technology,38(15), 4206–4214.

    CAS  Article  Google Scholar 

  31. Dadea, C., Casagrande, S., La Rocca, N., Mimmo, T., Russo, A., & Zerbe, S. (2016). Heavy metal accumulation in urban soils and deciduous trees in the City of Bolzano, N Italy. Waldokologie Online,15, 35–42.

    Google Scholar 

  32. Dadea, C., Russo, A., Tagliavini, M., Mimmo, T., & Zerbe, S. (2017). Tree species as tools for biomonitoring and phytoremediation in urban environments: A review with special regard to heavy metals. Arboriculture and Urban Forestry,43(4), 155–167.

    Google Scholar 

  33. Dogan, Y., Unver, M., Ugulu, I., Calis, M., & Durkan, N. (2014). Heavy metal accumulation in the bark and leaves of Juglans regia planted in Artvin City, Turkey. Biotechnology, Biotechnological Equipment,28(4), 643–649.

    Article  CAS  Google Scholar 

  34. Donchenko, V., Kunin, Y., Russki, A., & Vizhenski, V. (2014). Evaluation of road transport effect on atmospheric air: Method of emission computations and use of results. Paris: Transport Research Arena.

    Google Scholar 

  35. Dongarrà, G., Manno, E., Varrica, D., Lombardo, M., & Vultaggio, M. (2010). Study on ambient concentrations of PM10, PM10–2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmospheric Environment,44(39), 5244–5257.

    Article  CAS  Google Scholar 

  36. Esposito, F., Memoli, V., Di Natale, G., Trifuoggi, M., & Maisto, G. (2019). Quercus ilex L. leaves as filters of air Cd, Cr, Cu, Ni and Pb. Chemosphere,218, 340–346.

    CAS  Article  Google Scholar 

  37. Ferri, R., Hashim, D., Smith, D. R., Guazzetti, S., Donna, F., et al. (2015). Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure. Science of the Total Environment,518–519, 507–515.

    Article  CAS  Google Scholar 

  38. Fujiwara, F. G., Gomez, D. R., Dawidowskia, L., Perelman, P., & Faggi, A. (2011). Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (Buenos Aires, Argentina). Ecological Indicators,11, 240–247.

    CAS  Article  Google Scholar 

  39. Gajbhiye, T., Pandey, S. K., Kim, K.-H., Szulejko, J. E., & Prasad, S. (2016). Airborne foliar transfer of PM bound heavy metals in Cassia siamea: A less common route of heavy metal accumulation. Science of the Total Environment,573, 123–130.

    CAS  Article  Google Scholar 

  40. Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators,48, 244–251.

    CAS  Article  Google Scholar 

  41. Genikhovich, E. L., Sonkin, L. R., & Kirillova, V. I. (2004) A statistical prognostic model for daily maxima of concentrations of urban air pollutnants. In 9th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes (pp. 34–39).

  42. Ghaderian, S. M., Hemmat, G. R., Reeves, R. D., & Baker, A. J. M. (2007). Accumulation of lead and zinc by plants colonizing a metal mining area in Central Iran. Journal of Applied Botany and Food Quality,81, 145–150.

    CAS  Google Scholar 

  43. Grigoratos, T., & Martini, G. (2014). Non-exhaust traffic related emissions. Brake and tyre wear PM (p. 53). Brussels: Publications Office of the European Union.

    Google Scholar 

  44. Guan, D. S., & Peart, M. R. (2006). Heavy metal concentrations in plants and soils at roadside locations and parks of urban Guangzhou. Journal of Environmental Sciences (China),18(3), 495–502.

    CAS  Google Scholar 

  45. Hagemeyer, J. (2000). Chapter 13 Trace metals in tree rings: What do they tell us? Trace Metals in the Environment,4, 375–385.

    CAS  Article  Google Scholar 

  46. Hooda, P., Henry, J., Seyoum, T. A., Armstrong, L. D. M., & Fowler, M. B. (2002). The potential impact of geophagia on the bioavailability of iron, zinc and calcium in human nutrition. Environmental Geochemistry and Health,24, 305–319.

    CAS  Article  Google Scholar 

  47. Huang, J., Deng, F., & Wu, S. (2016). Acute effects on pulmonary function in young healthy adults exposed to traffic-related air pollution in semi-closed transport hub in Beijing. Environmental Health and Preventive Medicine,21(5), 312–320.

    Article  CAS  Google Scholar 

  48. Içel, Y., & Çobanoǧlu, G. (2009). Biomonitoring of atmospheric heavy metal pollution using lichens and mosses in the city of Istanbul, Turkey. Fresenius Environmental Bulletin,18(11), 2066–2071.

    Google Scholar 

  49. Jamriska, M., & Morawska, L. K. (2008). The effect of temperature and humidity on size segregated traffic exhaust particle emissions. Atmospheric Environment,42, 2369–2382.

    CAS  Article  Google Scholar 

  50. Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I., & Haq, Q. M. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences,16(12), 29592–29630.

    CAS  Article  Google Scholar 

  51. Janta, R., & Chantara, S. (2017). Tree bark as bioindicator of metal accumulation from road traffic and air quality map: A case study of Chiang Mai, Thailand. Atmospheric Pollution Research,8(5), 956–967.

    Article  Google Scholar 

  52. Jayasekera, R., & Rossbach, M. (1996). Background levels of heavy metals in plants of different taxonomic groups from a montane rain forest in Sri Lanka. Environmental Geochemistry and Health,18(2), 55–62.

    CAS  Article  Google Scholar 

  53. Jiang, Y., Fan, M., Hu, R., Zhao, J., & Wu, Y. (2018). Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. International Journal of Environmental Research and Public Health,15(6), 1105.

    Article  CAS  Google Scholar 

  54. Jung, M. C., & Thornton, I. (1996). Heavy metal contamination of soils and plants in the vicinity of lead-zinc mine, Korea. Applied Geochemistry,11, 53–59.

    CAS  Article  Google Scholar 

  55. Karavin, N., Cansaran, A., & Yildirim, C. (2014). Investigation on heavy metal accumulation of Aesculus hippocastanum L., Platanusorientalis L. and Populus alba L. and determining the pollution levels in Amasya, Central Black Sea region of Turkey. Fresenius Environmental Bulletin,23(4), 1080–1084.

    CAS  Google Scholar 

  56. Kicińska, A., & Gruszecka-Kosowska, A. (2016). Long-term changes of metal contents in two metallophyte species (Olkusz & area of Zn-Pb ores, Poland). Environment Monitoring Assesment,188, 339.

    Article  CAS  Google Scholar 

  57. Kleckerova, A., & Docekalová, H. (2014). Dandelion plants as a biomonitor of urban area contamination by heavy metals. International Journal of Environmental Research,8(1), 157–164.

    CAS  Google Scholar 

  58. Kłos, A., Ziembik, Z., Rajfur, M., Dołhańczuk-Śródka, A., Bochenek, Z., Bjerke, J. W., et al. (2018). Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Science of the Total Environment,627, 438–449.

    Article  CAS  Google Scholar 

  59. Koroteeva, E. V., Veselkin, D. V., Kuyantseva, N. B., Mumber, A. G., & Chashchina, O. E. (2015). Accumulation of Heavy Metals in the Different Betula pendula Roth Organs near the Karabash Copper Smelter. Agrochemistry,3, 88–96.

    Google Scholar 

  60. Kostryukova, A. M. (2017). Monitoring air quality using lichens in Chelyabinsk, Russian Federation. International Journal of GEOMATE,12(34), 101–106.

    Google Scholar 

  61. Kozlov, M. V., Haukioja, E., Bakhtiarov, E. V., Stroganov, D. N., & Zimina, S. N. (2000). Root versus canopy uptake of heavy metals by birch in an industrially polluted area: Contrasting behaviour of nickel and copper. Environmental Pollution,107(3), 413–420.

    CAS  Article  Google Scholar 

  62. Krupnova, T. G., Mashkova, I. V., Gavrilkina, S. V., Scalev, E. D., & Egorov, N. O. (2018). Concentrations of metal(loid)s in outdoor and indoor dust from Russian City. International Journal of GEOMATE,15(52), 30–37.

    Google Scholar 

  63. Krupnova, T. G., Mashkova, I. V., & Kostryukova, A. M. (2017). Using birch leaves to indicate air pollution. International Journal of GEOMATE,13(40), 54–59.

    Article  Google Scholar 

  64. Lagidze, L., Matchavariani, L., Tsivtsivadze, N., Khidasheli, N., Paichadze, N., Motsonelidze, N., et al. (2015). Medical aspects of atmosphere pollution in Tbilisi, Georgia. Journal of Environmental Biology,36(1), 101–106.

    Google Scholar 

  65. Lepeule, J., Laden, F., Dockery, D., & Schwartz, J. (2012). Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard six cities study from 1974 to 2009. Environmental Health Perspectives,120(7), 965–970.

    Article  Google Scholar 

  66. Lepp, N. W. (1975). The potential of tree-ring analysis for monitoring heavy metal pollution patterns. Environmental Pollution,9(1), 49–61.

    CAS  Article  Google Scholar 

  67. Lin, Y., Zou, J., Yang, W., & Li, Ch-Q. (2018). A review of recent advances in research on PM25 in China. International Journal of Environmental Research and Public Health,15(3), 438.

    Article  CAS  Google Scholar 

  68. Lisetskii, F., & Borovlev, A. (2019). Monitoring of emission of particulate matter and air pollution using Lidar in Belgorod, Russia. Aerosol and Air Quality Research,19(3), 504–514.

    CAS  Article  Google Scholar 

  69. Lisovoy, D. A., & Sinyavskiy, V. A. (2005). Ecological condition of soils and urbanozems of Chelyabinsk. Bulletin of Chelyabinsk state University,1(12), 151–154.

    Google Scholar 

  70. Liu, W., Ni, J., & Zhou, Q. (2013). Uptake of heavy metals by trees: Prospects for phytoremediation. Materials Science Forum,743–744, 768–781.

    Article  CAS  Google Scholar 

  71. Liu, Y., Yang, Z., Zhu, M., & Yin, J. (2017). Role of plant leaves in removing airborne dust and associated metals on Beijing roadsides. Aerosol and Air Quality Research,17(10), 2566–2584.

    Article  Google Scholar 

  72. Lough, G., Schauer, J. J., Park, J. S., Shafer, M. M., Deminter, J. T., & Weinstein, J. (2005). Emissions of metals associated with motor vehicle roadways. Environmental Science and Technology,39, 826–836.

    CAS  Article  Google Scholar 

  73. Lozhkina, O., Lozhkin, V., Nevmerzhitsky, N., Tarkhov, D., & Vasilyev, A. (2016). Motor transport related harmful PM2.5 and PM10: From on road measurements to the modelling of air pollution by neural network approach on street and urban level. Journal of Physics: Conference Series,772(1), 12–15.

    Google Scholar 

  74. Lu, X. W. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal Hazard Mater,173(1–3), 744–749.

    CAS  Article  Google Scholar 

  75. Mahfouz, M., Yiğiterhan, O., Elobaid, E., Hassan, H., & Alföldy, B. (2019). Elemental compositions of particulate matter retained on air condition unit’s filters at Greater Doha, Qatar. Environmental Geochemistry and Health,41(6), 2533–2548.

    CAS  Article  Google Scholar 

  76. Manalis, N., Grivas, G., Protonotarios, V., & Chaloulakou, A. (2005). Toxic metal content of particulate matter (PM10), within the Greater Area of Athens. Chemosphere,60(4), 557–566.

    CAS  Article  Google Scholar 

  77. Matchavariani, L., Kalandadze, B., Lagidze, L., Gokhelashvili, N., Sulkhanishvili, N., Paichadze, N., et al. (2015). Soil quality changes in response to their pollution by heavy metals, Georgia. Journal of Environmental Biology,36(1), 85–90.

    Google Scholar 

  78. Mazur, Z., Radziemska, M., Fronczyk, J., & Jeznach, J. (2015). Heavy metal accumulation in bioindicators of pollution in urban areas of northeastern Poland. Fresenius Environmental Bulletin,24(1A), 216–223.

    Google Scholar 

  79. Mertens, J., Luyssaert, S., & Verheyen, K. (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution,138(1), 1–4.

    CAS  Article  Google Scholar 

  80. Milić, D., Luković, J., Ninkov, J., Zeremski-Škorić, T., Zorić, L., Vasin, J., et al. (2012). Heavy metal content in halophytic plants from inland and maritime saline areas. Central European Journal of Biology,7(2), 307–317.

    Google Scholar 

  81. Ministry of Natural Resources of Russia. (1987). Methodology for calculating atmospheric concentrations of harmful substances contained in industrial emissions (OND-86). Hydrometeoizdat.

  82. Mitchell, R., & Maher, B. A. (2009). Evaluation and application of biomagnetic monitoring of traffic-derived particulate pollution. Atmospheric Environment,43, 2095–2103.

    CAS  Article  Google Scholar 

  83. Mohanraj, R., Azeez, P. A., & Priscilla, T. (2004). Heavy metals in airborne particulate matter of urban Coimbatore. Archives of Environmental Contamination and Toxicology,47, 162–167.

    CAS  Article  Google Scholar 

  84. Moreno, E., Sagnotti, L., Dinarès-Turell, J., Winkler, A., & Cascella, A. (2003). Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmospheric Environment,37(21), 2967–2977.

    CAS  Article  Google Scholar 

  85. Mori, J., Fini, A., Galimberti, M., Ginepro, M., Burchi, G., Massa, D., et al. (2018). Air pollution deposition on a roadside vegetation barrier in a Mediterranean environment: Combined effect of evergreen shrub species and planting density. Science of The Total Environment, 643, 725–737.

    CAS  Article  Google Scholar 

  86. Morton-Bermea, O., Bernal, G. J. M., Armienta, M., Lozano-Santacruz, R., Alvarez-Hernandez, E., Romero, F., et al. (2013). Metal accumulation by plant species growing on a mine contaminated site in Mexico. Environmental Earth Sciences,71, 5207–5213.

    Article  CAS  Google Scholar 

  87. Myung, C. J., & Thornton, I. (1999). Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine. Korea. Applied Geochemistry,11(1–2), 53–59.

    Google Scholar 

  88. Nazir, R., Khan, M., Masab, M., Rehman, H., Rauf, N., Shahab, S., et al. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water Collected from Tanda Dam kohat. Journal of Pharmaceutical Sciences and Research,7(3), 89–97.

    CAS  Google Scholar 

  89. Nevmerzhitsky, N., Lozhkina, O., & Lozhkin, V. (2016). Calculation methodic and computer program for estimation and prognostication of road air pollution by PM10 and PM25. Bulletin of Civil Engineers,2(55), 206–209. (Rus).

    Google Scholar 

  90. Ng, O.-H., Tan, B. C., & Obbard, J. P. (2006). Lichens as bioindicators of atmospheric heavy metal pollution in Singapore). Environmental Monitoring and Assessment,123(1–3), 63–74.

    CAS  Article  Google Scholar 

  91. Nicolas, J. F., Yubero, E., Pastor, C., Crespo, J., & Carratalá, A. (2009). Influence of meteorological variability upon aerosol mass size distribution. Atmospheric Research,94(2), 330–337.

    Article  Google Scholar 

  92. Norouzi, S., Khademi, H., Faz Cano, A., & Acosta, J. A. (2015). Using plane tree leaves for biomonitoring of dust borne heavy metals: A case study from Isfahan, Central Iran. Ecological Indicators,57, 64–73.

    CAS  Article  Google Scholar 

  93. Odukoya, O. O., Arowolo, T. A., & Bamgbose, O. (2000). Pb, Zn, and Cu levels in tree barks as indicator of atmospheric pollution. Environment International,26(1–2), 11–16.

    CAS  Article  Google Scholar 

  94. Order of the Ministry of Natural Resources and Ecology of the Russian Federation dated 06.06.2017 No. 273. On approval of calculation methods for dispersing emissions of harmful (polluting) substances in the air.

  95. Pacheco, A. M. G., Barros, L., Freitas, M., Reis, M., Hipólito, C., & Oliveira, O. (2002). An evaluation of olive-tree bark for the biological monitoring of airborne trace-elements at ground level. Environmental Pollution,120(1), 79–86.

    CAS  Article  Google Scholar 

  96. Pacheco, A. M. G., Freitas, M., Baptista, M., Vasconcelos, M., & Cabral, J. (2008). Elemental levels in tree-bark and epiphytic-lichen transplants at a mixed environment in mainland Portugal, and comparisons with an in situ lichen. Environmental Pollution,151(2), 326–333.

    CAS  Article  Google Scholar 

  97. Pajević, S., Borišev, M., Nikolić, N., Arsenov, D. D., & Orlović, S. (2016). Phytoextraction of heavy metals by fast-growing trees: A review. In Phytoremediation (pp. 29–64). Springer International Publishing.

  98. Pan, H., Lu, X., & Lei, K. A. (2017). Comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Science of the Total Environment,609, 1361–1369.

    CAS  Article  Google Scholar 

  99. Patel, K. S., Sharma, R., Dahariya, N. S., Yadav, A., Blazhev, B., Matini, L., et al. (2015). Heavy metal contamination of tree leaves. American Journal of Analytical Chemistry,6, 687–693.

    CAS  Article  Google Scholar 

  100. Pavlović, M., Pavlović, D., Kostić, O., Jarić, S., Čakmak, D., Pavlović, P., et al. (2017). Evaluation of urban contamination with trace elements in city parks in Serbia using pine (Pinus nigra Arnold) needles, bark and urban topsoil. International Journal of Environmental Research,11, 625–639.

    Article  CAS  Google Scholar 

  101. Pesch, R., & Schroeder, W. (2006). Mosses as bioindicators for metal accumulation: Statistical aggregation of measurement data to exposure indices. Ecological Indicators,6(1), 137–152.

    CAS  Article  Google Scholar 

  102. Petrova, S., Yurukova, L., & Velcheva, I. (2014). Possibilities of using deciduous tree species in trace element biomonitoring in an urban area (Plovdiv, Bulgaria). Atmospheric Pollution Research,5(2), 196–202.

    Article  CAS  Google Scholar 

  103. Plum, L. M., Rink, L., & Haase, H. (2010). The essential toxin: impact of zinc on human health. International Journal of Environmental Research and Public Health,7(4), 1342–1365.

    CAS  Article  Google Scholar 

  104. Polichetti, G., Cocco, S., Spinali, A., Trimarco, V., & Nunziata, A. (2009). Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology,261(1–2), 1–8.

    CAS  Article  Google Scholar 

  105. Pöykiö, R., Perämäki, P., & Niemelä, M. (2005). The use of Scots pine. International Journal of Environmental Analytical Chemistry,85(2), 127–139.

    Article  CAS  Google Scholar 

  106. Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—A review. Environment International,29(4), 529–540.

    CAS  Article  Google Scholar 

  107. Rajfur, M. (2019). Assessment of the possibility of using deciduous tree bark as a biomonitor of heavy metal pollution of atmospheric aerosol. Environmental Science and Pollution Research,26, 35945–35956.

    CAS  Article  Google Scholar 

  108. Ramírez, O., Sánchez de la Campa, A. M., Amato, F., Moreno, T., Silva, L. F., & de la Rosa, J. D. (2019). Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Science of the Total Environment,652, 434–446.

    Article  CAS  Google Scholar 

  109. Ratto, G., Maronna, R., Repossi, P., Videla, F., Nico, A., & Almandos, J. (2012). Analysis of winds affecting air pollutant transport at La Plata, Argentina. Atmospheric and Climate Sciences,2(1), 60–75.

    CAS  Article  Google Scholar 

  110. Reponen, T., Grinshpun, S., Trakumas, S., Martuzevicius, D., Wang, Z., Masters, Le, et al. (2003). Concentration gradient patterns of aerosol particles near interstate highways in the Greater Cincinnati airshed. Journal of Environmental Monitoring,5(4), 557–562.

    CAS  Article  Google Scholar 

  111. Revich, B. A. (2018). Fine suspended particulates in ambient air and their health effects in megalopolises. Problems of Ecological Monitoring and Ecosystem Modelling, 29(3), 53–78.

    Article  Google Scholar 

  112. Rinkis, G., & Nollendorfs, V. (1982). Macro and micronutrients in balanced nutrition of plants. Zinatne(Rus).

  113. Rocha, E., Gunnarson, B., Kylander, M. E., Augustsson, A., Rindby, A., & Holzkämper, S. (2020). Science of the Total Environment,720, 137429.

    CAS  Article  Google Scholar 

  114. Rola, K., & Osyczka, P. (2018). Cryptogamic communities as a useful bioindication tool for estimating the degree of soil pollution with heavy metals. Ecological Indicators,19, 1110–1119.

    Google Scholar 

  115. Roohani, N., Hurrell, R., Kelishadi, R., & Schulin, R. (2013). Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences,18(2), 144–157.

    Google Scholar 

  116. Russian State Statistics Service of Chelyabinsk region. (2017). Report Transport and communications in Chelyabinsk region, 2017 (Rus).

  117. Samecka-Cymerman, A., Stankiewicz, A., Kolon, K., & Kempers, A. J. (2009). Selforganizing feature map (neutral networks) as a tool to select the best indicator of a road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.). Environmental Pollution,157, 2061–2065.

    CAS  Article  Google Scholar 

  118. Sawidis, T., Breusteb, J., Mitrovicc, M., Pavlovicc, P., & Tsigaridasa, K. (2011). Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution,159(12), 3560–3570.

    CAS  Article  Google Scholar 

  119. Schauer, J. J., Lough, G. C., Shafer, M. M., Christensen, W. F., Arndt, M. F., DeMinter, J. T., et al. (2006). Characterization of metals emitted from motor vehicles. Health Effect Institute,133, 1–88.

    Google Scholar 

  120. Schelle, E., Rawlins, B. G., Lark, R. M., Webster, R., Staton, I., & McLeod, C. W. (2008). Mapping aerial metal deposition in metropolitan areas from tree bark: A case study in Sheffield. England Environmental Pollution,155(1), 164–173.

    CAS  Article  Google Scholar 

  121. Schreck, E., Foucault, Y., Sarret, G., Sobanska, S., Cécillon, L., et al. (2012). Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Science of the Total Environment,427–428, 253–262.

    Article  CAS  Google Scholar 

  122. Serbula, S. M., Miljkovic, D. D., Kovacevic, R. M., & Ilic, A. A. (2012). Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environmental Safety,76(2), 209–214.

    CAS  Article  Google Scholar 

  123. Sgrigna, G., Baldacchini, C., Esposito, R., Calandrelli, R., Tiwary, A., et al. (2016). Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis. Science of the Total Environment,548–549, 91–99.

    Article  CAS  Google Scholar 

  124. Shahid, M., Dumat, C., Khalida, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal Hazard Mater,5(325), 36–58.

    Article  CAS  Google Scholar 

  125. Signorelli, S. S., Oliveri Conti, G., Zanobetti, A., Baccarelli, A., Fiore, M., & Ferrante, M. (2019). Effect of particulate matter-bound metals exposure on prothrombotic biomarkers: A systematic review. Environmental Research,177, 108573.

    CAS  Article  Google Scholar 

  126. Siromlya, T. I. (2011). Influence of pollution on ecological state of contemporary problems of Plantagomajor L. Ecology,18(5), 677–688.

    Google Scholar 

  127. Song, Y., Maher, B. A., Li, F., Wang, Xi, Sun, Xi, & Zhang, H. (2015). Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmospheric Environment,105, 53–60.

    CAS  Article  Google Scholar 

  128. Stefanowicz, A. M., Stanek, M., & Woch, M. W. (2016). High concentrations of heavy metals in beech forest understory plants growing on waste heaps left by Zn-Pb ore mining. Journal of Geochemical Exploration,169, 157–162.

    CAS  Article  Google Scholar 

  129. Sulaiman, F. R., & Hamzah, H. S. (2018). Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecological Processes,7, 28.

    Article  Google Scholar 

  130. Szönyi, M., Sagnotti, L., & Hirt, A. M. (2007). On leaf magnetic homogeneity in particulate matter biomonitoring studies. Geophysical Research Letters,34(6), L06306.

    Article  Google Scholar 

  131. Szwalec, A., Lasota, A., Kędzior, R., & Mundała, P. (2018). Variation in heavy metal content in plants growing on a zinc and lead tailings dump. Applied Ecology and Environmental Research, 16(4), 5081–5094.

    Article  Google Scholar 

  132. Takenaka, C., Kobayashi, M., & Kanaya, S. (2009). Accumulation of cadmium and zinc in Evodiopanax innovans. Environmental Geochemistry and Health,31, 609–615.

    CAS  Article  Google Scholar 

  133. Tang, U. W., & Wang, Z. S. (2006). Determining gaseous emission factors and drivers’s particle exposures during traffic congestion by vehicle following measurement techniques. The Journal of the Air & Waste Management Association,56, 1532–1539.

    CAS  Article  Google Scholar 

  134. Tashekova, A. Z., & Toropov, A. S. (2017). Application of leaves as biogeoindicators of urban environment state. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering,328(5), 114–124.

    Google Scholar 

  135. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. Environmental Science, Medicine,101, 133–164.

    Google Scholar 

  136. Tellez-Plaza, M., Guallar, E., & Navas-Acien, A. (2018). Environmental metals and cardiovascular disease. The BMJ,362, 343.

    Google Scholar 

  137. Thornton, I. (1991). Metal contamination of soils in urban areas. In P. Bullock & P. J. Gregory (Eds.), Soils in the Urban Environment (pp. 47–75). Oxford: Blackwell.

    Google Scholar 

  138. Tong, S. T. Y., & Lam, K. C. (1998). Are nursery schools and kindergartens safe for our kids? The Hong Kong study. Science of the Total Environment,38, 169–175.

    Google Scholar 

  139. Tzvetkova, N., & Petkova, K. (2015). Bioaccumulation of heavy metals by the leaves of Robiniapseudoacacia as a bioindicator tree in industrial zones. Journal of Environmental Biology,36(1), 59–63.

    Google Scholar 

  140. Urošević, A. M., Vuković, G., & Popovic, A. (2018). Environmental implication indices from elemental characterisations of collocated topsoil and moss samples. Ecological Indicators,90(4), 529–539.

    Article  CAS  Google Scholar 

  141. U.S. Environment Protection Agency (US EPA). (2014). Code of Federal Regulations: Priority Pollutants List. Washington: Office of Research and Development.

    Google Scholar 

  142. Vetchinnikova, L., Kuznetsova, T., & Titov, A. (2013). Features of accumulation of heavy metals in the leaves of woody plants on urbanized territories of the north. Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences,3, 68–73.

    Google Scholar 

  143. Wang, Z., Qin, H., & Wang, J. (2019). Accumulation of uranium and heavy metals in the soil–plant system in Xiazhuang uranium ore field, Guangdong Province, China. Environmental Geochemistry and Health,41(6), 2413–2423.

    CAS  Article  Google Scholar 

  144. Watmough, S. A. (1999). Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analysis. Environmental Pollution,106, 391–403.

    CAS  Article  Google Scholar 

  145. Weber, M. A., Tinashe, M., Sarkar, B., & Menon, M. (2019). Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England. Ecotoxicology and Environmental Safety,170, 156–165.

    CAS  Article  Google Scholar 

  146. Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal,2(94), 99–107.

    Article  CAS  Google Scholar 

  147. Wilson, B., Braithwaite, A., & Pyatt, A. F. (2005). An evaluation of procedures for the digestion of soils and vegetation from areas with metalliferous pollution. Journal of Toxicological and Environmental Chemistry,87(3), 335–344.

    CAS  Article  Google Scholar 

  148. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology: ISRN Ecology.

    Google Scholar 

  149. Yang, L., Wu, Y., Davis, J. M., et al. (2011). Estimating the effects of meteorology on PM2.5 reduction during the 2008 Summer Olympic Games in Beijing, China. Journal of Environmental Science and Engineering Technology,5, 331.

    CAS  Google Scholar 

  150. Yanqun, Z., Yuan, L., Schvartz, C., Langlade, L., & Fan, L. (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environment International,30(4), 567–576.

    Article  CAS  Google Scholar 

  151. Yu, K., Geel, M. V., Ceulemans, T., Geerts, W., Ramos, M. M., Serafim, C., et al. (2018). Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollutin in urban soils. Environmental Pollution,243(Pt B), 1912–1922.

    CAS  Article  Google Scholar 

  152. Yuan, Z., Yao, J., Wang, F., Guo, Z., Dong, Z., Chen, F., et al. (2017). Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China. Environmental Monitoring and Assessment,189, 1–25.

    Article  CAS  Google Scholar 

  153. Yusupov, D. V., Bolshunova, T. S., Mezhibor, A. M., Rikhvanov, L. P., & Baranovskaya, N. V. (2017). The use of Betula Pendula R. Leaves for the assessment of environmental pollution by metals around tailings from a gold deposit (Western Siberia, Russia) International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. SGEM,41(17), 665–672.

    Google Scholar 

  154. Yusupov, D. V., Rikhvanov, L. P., Baranovskaya, N. V., & Yalaltdinova, A. R. (2016). Geochemical features of poplar leaf elemental composition in urban areas. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering,327(6), 25–36.

    Google Scholar 

  155. Zakharov, V. M. (1990). Analysis of fluctuating asymmetry as a method of biomonitoring at the population level. In D. Krivolutsky (Ed.), Bioindication of chemical and radioactive pollution (pp. 187–198). Boca Raton: CRC Press.

    Google Scholar 

  156. Zeisler, V., & Schreiber, L. (2016). Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta,243, 65–81.

    CAS  Article  Google Scholar 

  157. Zhang, T., Bai, Yu., Hong, Xi, Sun, L., & Liu, Y. (2017). Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China. PLOS One,12(6), 0179840.

    Google Scholar 

  158. Zhou, X., Chen, Q., Liu, C., & Fang, Y. (2017). Using moss to assess airborne heavy metal pollution in Taizhou China. International Journal of Environmental Research and Public Health,14(4), 430.

    Article  CAS  Google Scholar 

  159. Zou, C., Zhang, Y., Rashid, A., Ram, H., Savasli, E., Arisoy, R., et al. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil,361, 1–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the head of laboratory Aleksandra Bulanova Nanotechnology Research and Education Centre, SUSU) for SEM measurements. This research was funded by Ministry of Science and Higher Education of the Russian Federation (Grant No. 2020-0022).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tatyana G. Krupnova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krupnova, T.G., Rakova, O.V., Gavrilkina, S.V. et al. Extremely high concentrations of zinc in birch tree leaves collected in Chelyabinsk, Russia. Environ Geochem Health (2020). https://doi.org/10.1007/s10653-020-00605-3

Download citation

Keywords

  • Birch tree leaves
  • Zinc
  • Zinc production plant
  • Metallurgical plant
  • Particulate matter
  • Microscopy