Occurrence and potential risk of organophosphorus pesticides in urbanised Linggi River, Negeri Sembilan, Malaysia

Abstract

The application of organophosphorus pesticides (OPPs) increased gradually because of the rise in global food demand that triggered the agriculture sector to increase the production, leading to OPP residues in the surface water. This study elucidated the presence of OPPs and estimated its ecological risk in the riverine ecosystem of the urbanised Linggi River, Negeri Sembilan, Malaysia. The OPP concentration in surface water was determined using solid-phase extraction method and high-performance liquid chromatography coupled with diode array detection. Further, the ecological risk was estimated by using the risk quotient (RQ) method. The three OPPs, i.e. chlorpyrifos, diazinon, and quinalphos were detected with mean concentrations of 0.0275 µg/L, 0.0328 µg/L, and 0.0362 µg/L, respectively. The OPPs were at high risk (in general and worst cases) under acute exposure. The estimated risk of diazinon was observed as medium for general (RQm = 0.5857) and high for worst cases (RQex = 4.4678). Notably, the estimated risk for chlorpyrifos was high for both general and worst cases (RQm = 1.9643 and RQex = 11.5643) towards the aquatic ecosystem of the Linggi River. Chronic risk of quinalphos remains unknown because of the absence of toxicity endpoints. This study presented clear knowledge regarding OPP contamination and possible risk for aquatic ecosystems. Hence, OPPs should be listed as one of the main priority contaminants in pesticide mitigation management in the future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol,2(1), 1–12.

    Article  Google Scholar 

  2. Alexandratos, N., Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision (vol. 12, no. 3). FAO, Rome: ESA Working paper.

  3. Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J. C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment,123(4), 247–260.

    Article  CAS  Google Scholar 

  4. Campo, J., Masiá, A., Blasco, C., & Picó, Y. (2013). Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. Journal of Hazardous Materials,263, 146–157.

    CAS  Article  Google Scholar 

  5. Carpenter, K. D., Kuivila, K. M., Hladik, M. L., Haluska, T., & Cole, M. B. (2016). Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages. Environmental Monitoring and Assessment,188(6), 345.

    Article  CAS  Google Scholar 

  6. Casida, J. E., & Durkin, K. A. (2013). Anticholinesterase insecticide retrospective. Chemico-Biological Interactions,203(1), 221–225.

    CAS  Article  Google Scholar 

  7. Ccanccapa, A., Masiá, A., Andreu, V., & Picó, Y. (2016a). Spatio-temporal patterns of pesticide residues in the Turia and Júcar Rivers (Spain). Science of the Total Environment,540, 200–210.

    CAS  Article  Google Scholar 

  8. Ccanccapa, A., Masiá, A., Ortega, A. N., Pico, Y., & Barcelo, D. (2016b). Pesticides in the Ebro River basin: Occurrence and risk assessment. Environmental Pollution,211, 414–424.

    CAS  Article  Google Scholar 

  9. Chen, Y., Yu, K., Hassan, M., Xu, C., Zhang, B., Gin, K. Y. H., et al. (2018). Occurrence, distribution and risk assessment of pesticides in a river-reservoir system. Ecotoxicology and Environmental Safety,166, 320–327.

    CAS  Article  Google Scholar 

  10. Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology,11(3), 315–335.

    CAS  Article  Google Scholar 

  11. Commission, European. (2003). Technical guidance document on risk assessment: Part II. Belgium: European Commission Joint Research Centre.

    Google Scholar 

  12. Dawson, A. H., Eddleston, M., Senarathna, L., Mohamed, F., Gawarammana, I., Bowe, S. J., et al. (2010). Acute human lethal toxicity of agricultural pesticides: a prospective cohort study. PLoS Medicine,7(10), e1000357.

    Article  CAS  Google Scholar 

  13. Epa, U. S. (2007). Risks of Diazinon Use to the Federally Listed Endangered Barton Springs Salamander (Eurycea sosorum). Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  14. Fadaei, A., Dehghani, M. H., Nasseri, S., Mahvi, A. H., Rastkari, N., & Shayeghi, M. (2012). Organophosphorous pesticides in surface water of Iran. Bulletin of Environment Contamination and Toxicology,88(6), 867–869.

    CAS  Article  Google Scholar 

  15. FAO. (2017). FOASTAT. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/en/.

  16. Fournier, M. L., Echeverría-Sáenz, S., Mena, F., Arias-Andrés, M., de la Cruz, E., & Ruepert, C. (2018). Risk assessment of agriculture impact on the Frío River watershed and Caño Negro Ramsar wetland, Costa Rica. Environmental Science and Pollution Research,25(14), 13347–13359.

    CAS  Article  Google Scholar 

  17. Ghasemzadeh, J., Sinaei, M., & Bolouki, M. (2015). Biochemical and histological changes in fish, spotted scat (Scatophagus argus) exposed to Diazinon. Bulletin of Environment Contamination and Toxicology,94(2), 164–170.

    CAS  Article  Google Scholar 

  18. Gillespie, W., Czapar, G., & Hager, A. (2011). Pesticide fate in the environment: a guide for field inspectors (Contract Report CR 2011-07). Champaign, Illinois: Institute of Natural Resource Sustainability.

    Google Scholar 

  19. Glinski, D. A., Purucker, S. T., Van Meter, R. J., Black, M. C., & Henderson, W. M. (2018). Analysis of pesticides in surface water, stemflow, and throughfall in an agricultural area in South Georgia, USA. Chemosphere,209, 496–507.

    CAS  Article  Google Scholar 

  20. HSDB. (2019). Hazardous substances data bank. Retrieved from https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm.

  21. Ibrahim, N. K., & Mustafa, F. B. (2010). Spatial and temporal variations of silica in a disturbed tropical river basin. Sains Malaysiana,39(2), 189–198.

    CAS  Google Scholar 

  22. Köck-Schulmeyer, M., Villagrasa, M., de Alda, M. L., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment,458, 466–476.

    Article  CAS  Google Scholar 

  23. Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal,22(4), 1050–1064.

    CAS  Article  Google Scholar 

  24. Li, D., Huang, Q., Lu, M., Zhang, L., Yang, Z., Zong, M., et al. (2015). The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere,135, 387–393.

    CAS  Article  Google Scholar 

  25. Liu, W. R., Zhao, J. L., Liu, Y. S., Chen, Z. F., Yang, Y. Y., Zhang, Q. Q., et al. (2015). Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment. Environmental Pollution,200, 53–63.

    CAS  Article  Google Scholar 

  26. Montuori, P., Aurino, S., Garzonio, F., Sarnacchiaro, P., Polichetti, S., Nardone, A., et al. (2016). Estimates of Tiber River organophosphate pesticide loads to the Tyrrhenian Sea and ecological risk. Science of the Total Environment,559, 218–231.

    CAS  Article  Google Scholar 

  27. Montuori, P., Aurino, S., Nardone, A., Cirillo, T., & Triassi, M. (2015). Spatial distribution and partitioning of organophosphates pesticide in water and sediment from Sarno River and Estuary, Southern Italy. Environmental Science and Pollution Research,22(11), 8629–8642.

    CAS  Article  Google Scholar 

  28. Müller, K., Bach, M., Hartmann, H., Spiteller, M., & Frede, H. G. (2002). Point-and nonpoint-source pesticide contamination in the Zwester Ohm catchment, Germany. Journal of Environmental Quality,31(1), 309–318.

    Article  Google Scholar 

  29. Palma, P., Köck-Schulmeyer, M., Alvarenga, P., Ledo, L., Barbosa, I. R., López de Alda, M., et al. (2014). Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Science of the Total Environment,488–489, 208–219.

    Article  CAS  Google Scholar 

  30. Phillips, P. J., & Bode, R. W. (2002). Concentrations of pesticides and pesticide degradates in the Croton River watershed in southeastern New York, July–September 2000. Reston, Va.: US Department of the Interior, US Geological Survey.

    Google Scholar 

  31. Postigo, C., de Alda, M. J. L., Barceló, D., Ginebreda, A., Garrido, T., & Fraile, J. (2010). Analysis and occurrence of selected medium to highly polar pesticides in groundwater of Catalonia (NE Spain): An approach based on on-line solid phase extraction-liquid chromatography—electrospray-tandem mass spectrometry detection. Journal of Hydrology,383(1–2), 83–92.

    CAS  Article  Google Scholar 

  32. PPDB. (2019). Pesticide properties database. Retrieved from https://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm.

  33. Sangsawang, A., Kovitvadhi, U., Clearwater, S. J., Kovitvadhi, S., Satapornvanit, K., & Thompson, K. (2017). Acute toxicity of chlorpyrifos and carbosulfan to glochidia of the freshwater mussel Hyriopsis bialata Simpson, 1900. Environmental Science and Pollution Research,24(26), 21361–21374.

    CAS  Article  Google Scholar 

  34. Schaefer, C., Peters, P. W., & Miller, R. K. (2014). Drugs during pregnancy and lactation:Treatment options and risk assessment. In S. M. Barlow, F. M. Sullivan, & R. K. Miller (Eds.), Occupational, industrial and environmental agents. In Drugs During Pregnancy and Lactation (pp. 599–638). Massachusetts: Academic Press.

    Google Scholar 

  35. Stoytcheva, M. (2011). Pesticides in the modern world: Risks and benefits. In V. Chaplain, L. Mamy, L. Vieublé-Gonod, C. Mougin, P. Benoit, E. Barriuso, & S. Nélieu (Eds.), Fate of pesticides in soils: Toward an integrated approach of influential factors (pp. 53–560). London: Intechopen.

    Google Scholar 

  36. Sumon, K. A., Rashid, H., Peeters, E. T., Bosma, R. H., & Van den Brink, P. J. (2018). Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh. Chemosphere,206, 92–100.

    CAS  Article  Google Scholar 

  37. Sunanda, M., Rao, J. C. S., Neelima, P., Rao, K. G., & Simhachalam, G. (2016). Effects of chlorpyrifos (an organophosphate pesticide) in fish. International Journal of Pharmaceutical Sciences Review and Research,39(1), 299–305.

    CAS  Google Scholar 

  38. Tang, X., Zhu, B., & Katou, H. (2012). A review of rapid transport of pesticides from sloping farmland to surface waters: Processes and mitigation strategies. Journal of Environmental Sciences,24(3), 351–361.

    CAS  Article  Google Scholar 

  39. Tankiewicz, M., Fenik, J., & Biziuk, M. (2010). Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC Trends in Analytical Chemistry,29(9), 1050–1063.

    CAS  Article  Google Scholar 

  40. US EPA. (2012). Code of federal regulations—priority pollutant. p. 30 (Appendix A to 40 CFR Part 423), United States Environmental Protection Agency, Washington, DC.

  41. Ventura, C., Venturino, A., Miret, N., Randi, A., Rivera, E., Núñez, M., et al. (2015). Chlorpyrifos inhibits cell proliferation through ERK1/2 phosphorylation in breast cancer cell lines. Chemosphere,120, 343–350.

    CAS  Article  Google Scholar 

  42. Villiot, A., Chrétien, E., Drab-Sommesous, E., Rivière, E., Chakir, A., & Roth, E. (2018). Temporal and seasonal variation of atmospheric concentrations of currently used pesticides in Champagne in the centre of Reims from 2012 to 2015. Atmospheric Environment,174, 82–91.

    CAS  Article  Google Scholar 

  43. Walker, W. W. (1978). Insecticide persistence in natural seawater as affected by salinity, temperature, and sterility. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  44. Wang, Y., Gao, W., Wang, Y., & Jiang, G. (2019). Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF MS during wastewater treatment processes. Journal of Hazardous Materials,376, 153–159.

    CAS  Article  Google Scholar 

  45. Wee, S. Y., & Aris, A. Z. (2017a). Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Chemosphere,188, 575–581.

    CAS  Article  Google Scholar 

  46. Wee, S. Y., & Aris, A. Z. (2017b). Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environment International,106, 207–233.

    CAS  Article  Google Scholar 

  47. Wee, S. Y., Aris, A. Z., Yusoff, F. M., & Praveena, S. M. (2019). Occurrence and risk assessment of multiclass endocrine disrupting compounds in an urban tropical river and a proposed risk management and monitoring framework. Science of the Total Environment,671, 431–442.

    CAS  Article  Google Scholar 

  48. Wee, S. Y., Omar, T. F. T., Aris, A. Z., & Lee, Y. (2016). Surface water organophosphorus pesticides concentration and distribution in the Langat River, Selangor, Malaysia. Exposure and Health,8(4), 497–511.

    CAS  Article  Google Scholar 

  49. Xing, Y., Yu, Y., & Men, Y. (2018). Emerging investigators series: occurrence and fate of emerging organic contaminants in wastewater treatment plants with an enhanced nitrification step. Environmental Science: Water Research & Technology,4(10), 1412–1426.

    CAS  Google Scholar 

  50. Yashwanth, B., Pamanji, R., & Rao, J. V. (2016). Toxicomorphomics and toxicokinetics of quinalphos on embryonic development of zebrafish (Danio rerio) and its binding affinity towards hatching enzyme, ZHE1. Aquatic Toxicology,180, 155–163.

    CAS  Article  Google Scholar 

  51. Zerin, T., Song, H. Y., & Kim, Y. S. (2015). Quinalphos induced intracellular ROS generation and apoptosis in human alveolar A549 cells. Molecular & Cellular Toxicology,11(1), 61–69.

    CAS  Article  Google Scholar 

  52. Zhang, W. (2018). Global pesticide use: Profile, trend, cost/benefit and more. Proceedings of the International Academy of Ecology and Environmental Sciences,8(1), 1.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Universiti Putra Malaysia (UPM) under Geran Putra [GP/2017/9574800].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zaharin Aris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 282 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zainuddin, A.H., Wee, S.Y. & Aris, A.Z. Occurrence and potential risk of organophosphorus pesticides in urbanised Linggi River, Negeri Sembilan, Malaysia. Environ Geochem Health (2020). https://doi.org/10.1007/s10653-020-00604-4

Download citation

Keywords

  • Organophosphorus pesticide (OPP)
  • Surface water
  • SPE-HPLC-DAD
  • Risk assessment
  • Riverine ecosystem
  • Linggi River