Safe utilization and zoning on natural selenium-rich land resources: a case study of the typical area in Enshi County, China

Abstract

Selenium (Se) is an essential trace element. However, Se in soil is often accompanied by heavy metals, such as cadmium (Cd), because of geological background. The safe utilization of such Se-rich land resources remains a challenge. A typical Se-rich area located in Enshi County, China, was systematically investigated with geochemical and epidemiological methods. The results show that Se in the topsoil is 0.84 ± 1.39 μg/g, whereas that of Cd is 0.93 ± 1.63 μg/g. And the concentration of Se and Cd in corn is 0.22 ± 0.96 μg/g and 0.15 ± 0.32 μg/g, respectively, which is mainly related to the high concentrations in soil. The benchmark dose limit of urinary Cd for β2-microglobulin in subjects (n = 160) was calculated as 3.27 µg/g Cr. In view of crop–human dose effect and combining the relationship among the concentrations of crops and human biomarkers and the concentrations of crops and topsoil, this study established the models of land resource safety zoning. With that, the risk screening value of Cd in the soil could be obtained as 0.98 μg/g in this typical area. The proportions of priority utilization, safe utilization, and strict management of agricultural land area were 58.85%, 22.90%, and 18.25%, respectively, in Enshi, China. These results could provide scientific support for local agricultural development and ecological sustainability.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alfthan, G., Eurola, M., Ekholm, P., Venalainen, E. R., Root, T., Korkalainen, K., et al. (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. Journal of Trace Elements in Medicine and Biology, 31, 142–147.

    CAS  Google Scholar 

  2. Allen, B. C., Kavlock, R. J., Kimmel, C. A., & Faustman, E. M. (1994). Dose-response assessment for developmental toxicity. III. Statistical models. Fundamental and Applied Toxicology, 23(4), 496–509.

    CAS  Google Scholar 

  3. Alloway, B. J., Jackson, A. P., & Morgan, H. (1990). The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Science of the Total Environment, 91, 223–236.

    CAS  Google Scholar 

  4. Announcement of the Chinese State Council on Issuing the Action Plan for Soil Pollution Control (2016). http://zfs.mee.gov.cn/fg/gwyw/201605/t20160531_352665.shtml. Accessed 6 Aug 2019. (in Chinese).

  5. Banuelos, G. S., & Ajwa, H. A. (1999). Trace elements in soils and plants: An overview. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 34(4), 951–974.

    Google Scholar 

  6. Bar-Yosef, B., & Meek, D. (1987). Selenium sorption by kaolinite and montmorillonite. Soil Science, 144(1), 11–19.

    CAS  Google Scholar 

  7. Chang, C. Y., Yin, R. S., Wang, X., Shao, S. X., Chen, C. Y., & Zhang, H. (2019). Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. Science of the Total Environment, 669, 83–90.

    CAS  Google Scholar 

  8. Chen, J., He, W., Zhu, X., Yang, S., Yu, T., & Ma, W. (2020). An epidemiological study on kidney healthy in an area with high-level soil cadmium and selenium—Does selenium protect against cadmium-induced kidney injury? Science of the Total Environment, 698, 134106.

    CAS  Google Scholar 

  9. Chen, H., Yuan, X., Li, T., Hu, S., Ji, J., & Wang, C. (2016). Characteristics of heavy metal transfer and their influencing factors in different soil-crop systems of the industrialization region, China. Ecotoxicology and Environmental Safety, 126, 193–201.

    CAS  Google Scholar 

  10. Dang, F., Li, Z. Z., & Zhong, H. (2019). Methylmercury and selenium interactions: Mechanisms and implications for soil remediation. Critical Reviews in Environmental Science and Technology, 49(19), 1737–1768.

    CAS  Google Scholar 

  11. Dhillon, K. S., & Dhillon, S. K. (1999). Adsorption-desorption reactions of selenium in some soils of India. Geoderma, 93(1–2), 19–31.

    CAS  Google Scholar 

  12. Dhillon, K. S., & Dhillon, S. K. (2003). Distribution and management of seleniferous soils. Advances in Agronomy, 79, 119–184.

    CAS  Google Scholar 

  13. Dinh, Q. T., Cui, Z. W., Huang, J., Tran, T. A. T., Wang, D., Yang, W. X., et al. (2018). Selenium distribution in the Chinese environment and its relationship with human health: A review. Environment International, 112, 294–309.

    CAS  Google Scholar 

  14. Dinh, Q. T., Wang, M. K., Tran, T. A. T., Zhou, F., Wang, D., Zhai, H., et al. (2019). Bioavailability of selenium in soil-plant system and a regulatory approach. Critical Reviews in Environmental Science and Technology, 49(6), 443–517.

    CAS  Google Scholar 

  15. Du, Y. J., Luo, K. L., Ni, R. X., & Hussain, R. (2018). Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China. Environmental Geochemistry and Health, 40(5), 2049–2069.

    CAS  Google Scholar 

  16. Fordyce, F. M. (2013). Selenium deficiency and toxicity in the environment. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, et al. (Eds.), Essentials of medical geology (pp. 375–416). New York: Springer.

    Google Scholar 

  17. Fordyce, F. M., Zhang, G. D., Green, K., & Liu, X. P. (2000). Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Applied Geochemistry, 15(1), 117–132.

    CAS  Google Scholar 

  18. Gu, Q., Yang, Z., Yu, T., Ji, J., Hou, Q., & Zhang, Q. (2019). Application of ecogeochemical prediction model to safely exploit seleniferous soil. Ecotoxicology and Environmental Safety, 177, 133–139.

    CAS  Google Scholar 

  19. Gupta, U. C., & Gupta, S. C. (2014). Sources and Deficiency Diseases of Mineral Nutrients in Human Health and Nutrition: A Review. Pedosphere, 24(1), 13–38.

    CAS  Google Scholar 

  20. He, P. P., Lv, X. Z., & Wang, G. Y. (2004). Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environment International, 30(2), 167–172.

    CAS  Google Scholar 

  21. Hua, S. H., Luo, S. X., Xiao, Y. J., Luo, Z., & Fan, C. L. (2015). Enrichment of se in soil-crop systems in the selenium-rich region and their effects for the enrichment of heavy metals. In: Proceedings of the 5th international conference on advanced design and manufacturing engineering (Vol. 39, pp. 795–799).

  22. Huang, Y., Wang, Q. X., Gao, J., Lin, Z. Q., Banuelos, G. S., Yuan, L. X., et al. (2013). Daily dietary selenium intake in a high selenium Area of Enshi, China. Nutrients, 5(3), 700–710.

    CAS  Google Scholar 

  23. Huang, Q. Q., Xu, Y. M., Liu, Y. Y., Qin, X., Huang, R., & Liang, X. F. (2018). Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil. Environmental Science and Pollution Research, 25(31), 31175–31182.

    CAS  Google Scholar 

  24. Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255–277.

    CAS  Google Scholar 

  25. Jia, M. M., Zhang, Y. X., Huang, B., & Zhang, H. D. (2019). Source apportionment of selenium and influence factors on its bioavailability in intensively managed greenhouse soil: A case study in the east bank of the Dianchi Lake, China. Ecotoxicology and Environmental Safety, 170, 238–245.

    CAS  Google Scholar 

  26. Jordan, N., Ritter, A., Foerstendorf, H., Scheinost, A. C., Weiß, S., Heim, K., et al. (2013). Adsorption mechanism of selenium(VI) onto maghemite. Geochimica et Cosmochimica Acta, 103, 63–75.

    CAS  Google Scholar 

  27. Kuboi, T., Noguchi, A., & Yazaki, J. (1986). Family-dependent cadmium accumulation characteristics in higher plants. Plant and Soil, 92(3), 405–415.

    CAS  Google Scholar 

  28. Li, F., Fu, B., & Wang, X. (2004). Cadmium and zinc transfer from soil to plant :potential use of two mathematical models. Journal of Liaoning University, 31(3), 193–198.

    CAS  Google Scholar 

  29. Li, Z., Liang, D. L., Peng, Q., Cui, Z. W., Huang, J., & Lin, Z. Q. (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, 69–79.

    CAS  Google Scholar 

  30. Li, Z., Man, N., Wang, S. S., Liang, D. L., & Liu, J. J. (2015). Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties. Journal of Soils and Sediments, 15(5), 1150–1158.

    CAS  Google Scholar 

  31. Li, M., Xi, X., Xiao, G., Cheng, H., Yang, Z., Zhou, G., et al. (2014). National multi-purpose regional geochemical survey in China. Journal of Geochemical Exploration, 139, 21–30.

    CAS  Google Scholar 

  32. Lv, Y. Y., Yu, T., Yang, Z. F., Zhao, W. F., Zhang, M., & Wang, Q. (2014). Constraint on selenium bioavailability caused by its geochemical behavior in typical Kaschin-Beck disease areas in Aba, Sichuan Province of China. Science of the Total Environment, 493, 737–749.

    CAS  Google Scholar 

  33. Malagoli, M., Schiavon, M., dall’Acqua, S., & Pilon-Smits, E. A. H. (2015). Effects of selenium biofortification on crop nutritional quality. Frontiers in Plant Science, 6, 280.

    Google Scholar 

  34. Mcbride, M., Sauve, S., & Hendershot, W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48(2), 337–346.

    CAS  Google Scholar 

  35. Missana, T., Alonso, U., & García-Gutiérrez, M. (2009). Experimental study and modelling of selenite sorption onto illite and smectite clays. Journal of Colloid and Interface Science, 334(2), 132–138.

    CAS  Google Scholar 

  36. MLR (2014). Analytic methods for biologic samples in eco-geochemistry assessment. (Vol. DZ/T0253-2014, pp. 1–38). Beijing: Geology Press. (in Chinese).

  37. MOEE, & SAOMR (2018). Soil environmental quality risk control standard for soil contamination of agricultural land. (Vol. GB 15618, pp. 1–4). Beijing: China Environment Science Press. (in Chinese).

  38. Moulick, D., Santra, S. C., & Ghosh, D. (2018). Seed priming with Se mitigates As-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing As translocation. Environmental Science and Pollution Research, 25(27), 26978–26991.

    CAS  Google Scholar 

  39. Murata, K., Budtz-Jorgensen, E., & Grandjean, P. (2002). Benchmark dose calculations for methylmercury-associated delays on evoked potential latencies in two cohorts of children. Risk Analysis, 22(3), 465–474.

    Google Scholar 

  40. Murata, K., Weihe, P., Budtz-Jorgensen, E., Jorgensen, P. J., & Grandjean, P. (2004). Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury. Journal of Pediatrics, 144(2), 177–183.

    CAS  Google Scholar 

  41. Nakamaru, Y. M., & Altansuvd, J. (2014). Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere, 111, 366–371.

    CAS  Google Scholar 

  42. Natasha, S., Shahid, M., Niazi, N. K., Khalid, S., Murtaza, B., Bibi, I., et al. (2018). A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 234, 915–934.

    CAS  Google Scholar 

  43. NHFPA, & CFDA (2017). National Food Safety Standard for Maximum Levels of Contaminants in Foods. (Vol. GB 2762-2017, pp. 1–57). Beijing. (in Chinese).

  44. Oliver, M. A., & Gregory, P. J. (2015). Soil, food security and human health: a review. European Journal of Soil Science, 66(2), 257–276.

    Google Scholar 

  45. Peng, Q., Li, J., Wang, D., Wei, T. J., Chen, C. E. L., & Liang, D. L. (2019). Effects of ageing on bioavailability of selenium in soils assessed by diffusive gradients in thin-films and sequential extraction. Plant and Soil, 436(1–2), 159–171.

    CAS  Google Scholar 

  46. Qin, H. B., Zhu, J. M., Liang, L., Wang, M. S., & Su, H. (2013). The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environment International, 52, 66–74.

    CAS  Google Scholar 

  47. Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256–1268.

    CAS  Google Scholar 

  48. SAMR (2018). Standard for selenium content in selenium-enriched/selenium-containing foods and related products. (Vol. DB 61/T 556-2018, pp. 1–4). Xi’an. (in Chinese).

  49. Sand, S., Victorin, K., & Filipsson, A. F. (2008). The current state of knowledge on the use of the benchmark dose concept in risk assessment. Journal of Applied Toxicology, 28(4), 405–421.

    CAS  Google Scholar 

  50. Schiavon, M., & Pilon-Smits, E. A. H. (2017). Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. Journal of Environmental Quality, 46(1), 10–19.

    CAS  Google Scholar 

  51. Schulze, D. G. (2005). Clay minerals. In D. Hillel (Ed.), Encyclopedia of soils in the environment (pp. 246–254). Oxford: Elsevier.

    Google Scholar 

  52. Sharma, V. K., McDonald, T. J., Sohn, M., Anquandah, G. A. K., Pettine, M., & Zboril, R. (2015). Biogeochemistry of selenium. A review. Environmental Chemistry Letters, 13(1), 49–58.

    CAS  Google Scholar 

  53. Sun, G. X., Lu, X. A., Williams, P. N., & Zhu, Y. G. (2010). Distribution and Translocation of Selenium from Soil to Grain and Its Speciation in Paddy Rice (Oryza sativa L.). Environmental Science & Technology, 44(17), 6706-6711.

  54. Tan, J. A., Zhu, W. Y., Wang, W. Y., Li, R. B., Hou, S. F., Wang, D. C., et al. (2002). Selenium in soil and endemic diseases in China. Science of the Total Environment, 284(1–3), 227–235.

    CAS  Google Scholar 

  55. Vries, W. D., McLaughlin, M. J., & Groenenberg, J. E. (2011). Transfer functions for solid-solution partitioning of cadmium for Australian soils. Environmental Pollution, 159(12), 3583–3594.

    Google Scholar 

  56. Wang, D. F., Wei, Z. Y., Tang, S. M., & Qi, Z. P. (2014). Distribution of selenium and cadmium in soil-rice system of selenium-rich area in Hainan, China. Pakistan Journal of Pharmaceutical Sciences, 27(5), 1633–1639.

    CAS  Google Scholar 

  57. Wang, D., Zhou, F., Yang, W. X., Peng, Q., Man, N., & Liang, D. L. (2017). Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere, 182, 284–292.

    CAS  Google Scholar 

  58. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer.

    Google Scholar 

  59. Yang, L., Li, M., Yang, T., & Cao, W. (2015). Study on distribution characteristics of selenium content of surface soil and its influencing factors in Enshi City, Hubei Province. Resources Environment & Engineering, 29(6), 825–829, 848.

  60. Yang, G., Wang, S., Zhou, R., & Sun, S. (1983). Endemic selenium intoxication of humans in China. The American Journal of Clinical Nutrition, 37, 872–881.

    CAS  Google Scholar 

  61. Yang, Z., Yu, T., Li, M., Xi, X., Yun, W., & Ye, J. (2016). Specification for land quality geochemical assessment. (Vol. DZ/T 0295-2016, pp. 1–52). Beijing: Geology Press. (in Chinese).

  62. Yu, D. S., Liang, D. L., Lei, L. M., Zhang, R., Sun, X. F., & Lin, Z. Q. (2015). Selenium geochemical distribution in the environment and predicted human daily dietary intake in northeastern Qinghai, China. Environmental Science and Pollution Research, 22(15), 11224–11235.

    CAS  Google Scholar 

  63. Yu, T., Yang, Z., Wang, R., Zeng, Q., & Hou, W. (2018). Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi. Soils, 50(6), 1119–1125. (in Chinese).

    Google Scholar 

  64. Zhang, H., Feng, X. B., Zhu, J. M., Sapkota, A., Meng, B., Yao, H., et al. (2012). Selenium in Soil Inhibits Mercury Uptake and Trans location in Rice (Oryza sativa L.). Environmental Science & Technology, 46(18), 10040-10046.

    CAS  Google Scholar 

  65. Zhang, B. J., Wei, Y. H., Yan, S., Shi, H. X., Nie, Y. Y., Zou, G. X., et al. (2019). Characterization of selenium accumulation of different rice genotypes in Chinese natural seleniferous soil. Plant Soil and Environment, 65(1), 15–20.

    CAS  Google Scholar 

  66. Zhang, B. J., Yang, L. S., Wang, W. Y., Li, Y. H., & Li, H. R. (2011). Environmental selenium in the Kaschin-Beck disease area, Tibetan Plateau, China. Environmental Geochemistry and Health, 33(5), 495–501.

    CAS  Google Scholar 

  67. Zhao, C. Y., Ren, J. G., Xue, C. Z., & Lin, E. D. (2005). Study on the relationship between soil selenium and plant selenium uptake. Plant and Soil, 277(1–2), 197–206.

    CAS  Google Scholar 

  68. Zhu, J. M., Wang, N., Li, S., Li, L., Su, H., & Liu, C. X. (2008). Distribution and transport of selenium in Yutangba, China: Impact of human activities. Science of the Total Environment, 392(2–3), 252–261.

    CAS  Google Scholar 

  69. Zhu, J. M., & Zheng, B. S. (2001). Distribution of selenium in a mini-landscape of Yutangba, Enshi, Hubei Province, China. Applied Geochemistry, 16(11–12), 1333–1344.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2017YFD0800304) and the Land and Resources Survey Project of China Geological Survey (Grant Nos. DD20190524-06, DD20160323, and 1212011220319). The authors also gratefully acknowledge the financial support from the China Scholarship Council (Grant No. 201806405022). We thank Dr. Linxi Yuan for helping improve the manuscript. Chemical analysis for corn and soil samples was carried out in Anhui National Research Center for Geoanalysis. We would like to express our sincere thanks to the anonymous reviewers for their helpful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhongfang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Hou, W., Hou, Q. et al. Safe utilization and zoning on natural selenium-rich land resources: a case study of the typical area in Enshi County, China. Environ Geochem Health 42, 2803–2818 (2020). https://doi.org/10.1007/s10653-020-00519-0

Download citation

Keywords

  • Selenium
  • Heavy metal
  • Safe utilization
  • Antagonism
  • Enshi