The potential utilization of slag generated from iron- and steelmaking industries: a review

Abstract

Along with iron and steel production, large amount of slag is generated. Proper management on the iron- and steelmaking slag is highly demanded due to the high cost of direct disposal of the slag to landfill, which is the most adopted management approach. In this article, the potential application of iron- and steelmaking slag has been reviewed, which included the slag utilization in construction as cement and sand, in water, soil, and gas treatment, as well as in value material recovery. In addition, the challenge and required effort to be made in iron- and steelmaking slag management have been discussed.

This is a preview of subscription content, log in to check access.

References

  1. Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science,166(1), 36–59.

    CAS  Article  Google Scholar 

  2. Alanyali, H., Col, M., Yilmaz, M., & Karagoz, S. (2009). Concrete produced by steel-making slag (basic oxygen furnace) addition in portland cement. International Journal of Applied Ceramic Technology,6, 736–748.

    CAS  Article  Google Scholar 

  3. Ali, M. T., & Shahram, S. H. (2007). Converter slag as a liming agent in the amelioration of acidic soils. International Journal of Agriculture & Biology,5, 715–720.

    Google Scholar 

  4. Apul, D., Gardner, K., & Taylloreighmy, T. (2005). Simultaneous application of dissolution/precipitation and surface complexation/surface precipitation modeling to contaminant leaching. Environmental Science and Technology,39, 5736–5741.

    CAS  Article  Google Scholar 

  5. Aramouni, N. A. K., Touma, J. G., Tarboush, B. A., Zeaiter, J., & Ahmad, M. N. (2018). Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews,82(Part 3), 2570–2585.

    CAS  Article  Google Scholar 

  6. Baciocchi, R., Costa, G., Polettini, A., & Pomi, R. (2015). Effects of thin-film accelerated carbonation on steel slag leaching. Journal of Hazardous Materials,286(Supplement C), 369–378.

    CAS  Article  Google Scholar 

  7. Balczár, I., Korim, T., Hullár, H., Boros, A., & Makó, É. (2017). Manufacture of air-cooled slag-based alkali-activated cements using mechanochemical activation. Construction and Building Materials,137(Supplement C), 216–223.

    Article  CAS  Google Scholar 

  8. Bao, W., Li, H., & Zhang, Y. (2010). Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Industrial and Engineering Chemistry Research,49, 2055–2063.

    CAS  Article  Google Scholar 

  9. Barca, C., Gérente, C., Meyer, D., Chazarenc, F., & Andrès, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research,46(7), 2376–2384.

    CAS  Article  Google Scholar 

  10. Barca, C., Meyer, D., Liira, M., Drissen, P., Comeau, Y., Andrès, Y., et al. (2014). Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance. Ecological Engineering,68(Supplement C), 214–222.

    Article  Google Scholar 

  11. Barca, C., Roche, N., Troesch, S., Andrès, Y., & Chazarenc, F. (2018). Modelling hydrodynamics of horizontal flow steel slag filters designed to upgrade phosphorus removal in small wastewater treatment plants. Journal of Environmental Management,206(Supplement C), 349–356.

    CAS  Article  Google Scholar 

  12. Basu, S., Lahiri, A. K., & Seetharaman, S. (2008). Activity of iron oxide in steelmaking slag. Metallurgical and Materials Transactions B,39, 447–456.

    Article  CAS  Google Scholar 

  13. Battsengel, A., Batnasan, A., Narankhuu, A., Haga, K., Watanabe, Y., & Shibayama, A. (2018). Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy, 179, 100–109.

    CAS  Article  Google Scholar 

  14. Beh, C. L., Chuah, L., Choong, T. S. Y., Kamarudzaman, M. Z. B., & Abdan, K. (2010). Adsorption study of electric arc furnace slag for the removal of manganese from solution. American Journal of Applied Sciences,7, 442–446.

    CAS  Article  Google Scholar 

  15. Biskri, Y., Achoura, D., Chelghoum, N., & Mouret, M. (2017). Mechanical and durability characteristics of high performance concrete containing steel slag and crystalized slag as aggregates. Construction and Building Materials,150(Supplement C), 167–178.

    CAS  Article  Google Scholar 

  16. Bodurtha, P., & Brassard, P. (2000). Neutralization of acid by steel-making slags. Environmental Technology,21, 1271–1281.

    CAS  Article  Google Scholar 

  17. Burciaga-Díaz, O., & Escalante-García, J. I. (2017). Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cement & Concrete Composites,84(Supplement C), 157–166.

    Article  CAS  Google Scholar 

  18. Cantarino, M. V., de Carvalho Filho, C., & Borges Mansur, M. (2012). Selective removal of zinc from basic oxygen furnace sludges. Hydrometallurgy,111–112(Supplement C), 124–128.

    Article  CAS  Google Scholar 

  19. Carvalho, S. Z., Vernilli, F., Almeida, B., Demarco, M., & Silva, S. N. (2017). The recycling effect of BOF slag in the portland cement properties. Resources, Conservation and Recycling,127(Supplement C), 216–220.

    Article  Google Scholar 

  20. Chen, S.-H., Lin, D.-F., Luo, H.-L., & Lin, Z.-Y. (2017). Application of reclaimed basic oxygen furnace slag asphalt pavement in road base aggregate. Construction and Building Materials,157(Supplement C), 647–653.

    CAS  Article  Google Scholar 

  21. Claveau-Mallet, D., Courcelles, B., Pasquier, P., & Comeau, Y. (2017). Numerical simulations with the P-Hydroslag model to predict phosphorus removal by steel slag filters. Water Research,126(Supplement C), 421–432.

    CAS  Article  Google Scholar 

  22. Claveau-Mallet, D., Wallace, S., & Comeau, Y. (2013). Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Research,47(4), 1512–1520.

    CAS  Article  Google Scholar 

  23. Coppola, L., Buoso, A., Coffetti, D., Kara, P., & Lorenzi, S. (2016). Electric arc furnace granulated slag for sustainable concrete. Construction and Building Materials,123(Supplement C), 115–119.

    Article  Google Scholar 

  24. Curkovii, L., Cerjan-Stefanovii, S., & Rastovean-Mioe, A. (2000). Batch Pb2+ and Cu2+ removal by electric furnace slag. Water Research,35, 3436–3440.

    Article  Google Scholar 

  25. Da’na, E., & Awad, A. (2017). Regeneration of spent activated carbon obtained from home filtration system and applying it for heavy metals adsorption. Journal of Environmental Chemical Engineering,5(4), 3091–3099.

    Article  CAS  Google Scholar 

  26. Danilov, E. V. (2003). Modern technology for recycling steelmaking slags. Metallurgist,47, 232–234.

    CAS  Article  Google Scholar 

  27. Dieter, G., Karl, W., & Konrad, M. (1988). Process and device for producing granulated slag sand from blast furnace slag. Application Number: 07/004475.

  28. Dimitrova, S. V. (1996). Metal sorption on Blast-furnace slag. Water Research,30, 228–232.

    CAS  Article  Google Scholar 

  29. Dimitrova, S. V. (2002). Use of granular slag columns for lead removal. Water Research,36, 4001–4008.

    CAS  Article  Google Scholar 

  30. Duan, J., & Su, B. (2014). Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chemical Engineering Journal,246(Supplement C), 160–167.

    CAS  Article  Google Scholar 

  31. El-Naas, M. H., El Gamal, M., Hameedi, S., & Mohamed, A.-M. O. (2015). CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust. Journal of Environmental Management,156(Supplement C), 218–224.

    CAS  Article  Google Scholar 

  32. Emery, J. (1992). Mineral aggregate conservation reuse and recycling. Report prepared by Geotechnical Engineering Limited for Aggregate and Petroleum Resources Section, Ontario Ministry of Natural Resources, Ontario, 1992.

  33. Ferreira, V. J., Sáez-De-Guinoa Vilaplana, A., García-Armingol, T., Aranda-Usón, A., Lausín-González, C., López-Sabirón, A. M., et al. (2016). Evaluation of the steel slag incorporation as coarse aggregate for road construction: technical requirements and environmental impact assessment. Journal of Cleaner Production,130(Supplement C), 175–186.

    Article  Google Scholar 

  34. Fidalgo, B., Bermudez, J. M., Arenillas, A., & Menendez, J. A. (2009). Steel-making slag as catalyst for dry reforming of CH4. In 1st Spanish national conference on advances in materials recycling and eco-energy, Madrid, November 12–13, 2009, S04-01.

  35. Gahan, C. S., Cunha, M. L., & Sandström, Å. (2009). Comparative study on different steel slags as neutralising agent in bioleaching. Hydrometallurgy,95(3), 190–197.

    CAS  Article  Google Scholar 

  36. Gao, H., Song, Z., Zhang, W., Yang, X., Wang, X., & Wang, D. (2017). Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove methyl orange from aqueous solution. Journal of Environmental Sciences,53(Supplement C), 68–77.

    Article  Google Scholar 

  37. Geiseler, J. (1996). Use of steelworks slag in Europe. Waste Management,16, 59–63.

    CAS  Article  Google Scholar 

  38. Genç-Fuhrman, H., Mikkelsen, P. S., & Ledin, A. (2007). Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Research, 41(3), 591–602.

    Article  CAS  Google Scholar 

  39. Ghouleh, Z., Guthrie, R. I. L., & Shao, Y. (2017). Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete. Journal of CO2 Utilization,18(Supplement C), 125–138.

    CAS  Article  Google Scholar 

  40. Goetz, E. R., & Riefler, R. G. (2014). Performance of steel slag leach beds in acid mine drainage treatment. Chemical Engineering Journal,240(Supplement C), 579–588.

    CAS  Article  Google Scholar 

  41. Gomes, J. F. P., & Pinto, C. G. (2006). Leaching of heavy metals from steelmaking slags. Revista De Metalurgia,42, 409–416.

    CAS  Article  Google Scholar 

  42. Gopinath, S., & Mehra, A. (2016). Carbon sequestration during steel production: Modelling the dynamics of aqueous carbonation of steel slag.”. Chemical Engineering Research and Design,115(Part A), 173–181.

    CAS  Article  Google Scholar 

  43. Han, C., Wang, Z., Yang, W., Wu, Q., Yang, H., & Xue, X. (2016). Effects of pH on phosphorus removal capacities of basic oxygen furnace slag. Ecological Engineering,89(Supplement C), 1–6.

    CAS  Article  Google Scholar 

  44. Han, C., Wang, Z., Yang, H., & Xue, X. (2015). Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag. Journal of Environmental Sciences,30(Supplement C), 21–29.

    Article  CAS  Google Scholar 

  45. Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management,92(10), 2355–2388.

    CAS  Article  Google Scholar 

  46. He, H., Tam, N. F. Y., Yao, A., Qiu, R., Li, W. C., & Ye, Z. (2017). Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere,189(Supplement C), 247–254.

    CAS  Article  Google Scholar 

  47. Heikal, M., Al-Duaij, O. K., & Ibrahim, N. S. (2015). Microstructure of composite cements containing blast-furnace slag and silica nano-particles subjected to elevated thermally treatment temperature. Construction and Building Materials,93(Supplement C), 1067–1077.

    Article  Google Scholar 

  48. Heribeert, M., & Kuehn, M. (2004). Iron and steel slags as sustainable construction resources and fertilizer. In SCANMET-2nd international conference on process development in iron and steel making, Sweden (pp. 347–358).

  49. Hiroyuki, T., Koichi, T., & Tatsuhito, T. (2005). Steelmaking slag: uses and trends of development of uses. Current Advances in Materials and Processes,18, 1060–1072.

    Google Scholar 

  50. Hocheng, H., Su, C., & Jadhav, U. U. (2014). Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere,117(Supplement C), 652–657.

    CAS  Article  Google Scholar 

  51. Huijgen, W. J. J., & Comans, R. N. J. (2003). Carbon dioxide sequestration by mineral carbonation, literature review. ECN School Fossiel: Netherlands,1, 1–13.

    Google Scholar 

  52. Ichikawa, H., & Morishige, H. (2002). Effective use of steelmaking dust and sludge by use of Rotary Hearth Furnace. Nippon Steel Technical Report No. 86 July 2002.

  53. Jalkanen, H., Oghbasilasie, H., & Raipala, K. (2005). Recycling of steelmaking dusts-the radust concept. Journal of Mining and Metallurgy,41B, 1–16.

    Article  Google Scholar 

  54. Jha, V. K., Kameshima, Y., Nakajima, A., & Okada, K. (2004). Hazardous ions uptake behavior of thermally activated steel-making slag. Journal of Hazardous Materials,114(1), 139–144.

    CAS  Article  Google Scholar 

  55. Jha, V. K., Kameshima, Y., Nakajima, A., & Okada, K. (2008). Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. Journal of Hazardous Materials,156(1), 156–162.

    CAS  Article  Google Scholar 

  56. Jo, Y., Kim, J., Hwang, S., & Lee, C. (2015). Anaerobic treatment of rice winery wastewater in an upflow filter packed with steel slag under different hydraulic loading conditions. Bioresource Technology,193(Supplement C), 53–61.

    CAS  Article  Google Scholar 

  57. Jukes, L. M. (2003). The volume stability of modern steel making slag. Mineral Processing and Extractive Metallurgy,112, 177–197.

    Article  CAS  Google Scholar 

  58. Kadirova, Z. C., Hojamberdiev, M., Bo, L., Hojiyev, R., & Okada, K. (2015). Simultaneous removal of NH4+, H2PO4− and Ni2+ from aqueous solution by thermally activated combinations of steel converter slag and spent alumina catalyst. Journal of Water Process Engineering,8(Supplement C), 151–159.

    Article  Google Scholar 

  59. Kalyoncu, R. S. (2000). Slag-iron and steel. U.S. Geological survey minerals yearbook 2000 (Vol. 71, pp. 1–3).

  60. Kambole, C., Paige-Green, P., Kupolati, W. K., Ndambuki, J. M., & Adeboje, A. O. (2017). Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa. Construction and Building Materials,148(Supplement C), 618–631.

    CAS  Article  Google Scholar 

  61. Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia,50(Supplement C), 113–120.

    CAS  Article  Google Scholar 

  62. Ke, X., Bernal, S. A., & Provis, J. L. (2016). Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research,81(Supplement C), 24–37.

    CAS  Article  Google Scholar 

  63. Kim, D.-H., Shin, M.-C., Choi, H.-D., Seo, C.-I., & Baek, K. (2008). Removal mechanisms of copper using steel-making slag: adsorption and precipitation. Desalination,223, 283–289.

    CAS  Article  Google Scholar 

  64. Lan, Y.-P., Liu, Q.-C., Meng, F., Niu, D.-L., & Zhao, H. (2017). Optimization of magnetic separation process for iron recovery from steel slag. Journal of Iron and Steel Research International,24(2), 165–170.

    Article  Google Scholar 

  65. Le, D.-H., Sheen, Y.-N., & Bui, Q.-B. (2017). An assessment on volume stabilization of mortar with stainless steel slag sand. Construction and Building Materials,155(Supplement C), 200–208.

    CAS  Article  Google Scholar 

  66. Lenz, D. M., & Martins, F. B. (2007). Lead and zinc selective precipitation from leach electric arc furnace dust solutions. Revista Materia,12, 503–509.

    Article  Google Scholar 

  67. Li, Y., & Dai, W.-B. (2018). Modifying hot slag and converting it into value-added materials: A review. Journal of Cleaner Production,175(Supplement C), 176–189.

    CAS  Article  Google Scholar 

  68. Li, Q., Ding, H., Rahman, A., & He, D. (2016). Evaluation of basic oxygen furnace (BOF) material into slag-based asphalt concrete to be used in railway substructure. Construction and Building Materials,115(Supplement C), 593–601.

    CAS  Article  Google Scholar 

  69. Li, W., Lang, L., Wang, D., Wu, Y., & Li, F. (2018). Investigation on the dynamic shear modulus and damping ratio of steel slag sand mixtures. Construction and Building Materials,162(Supplement C), 170–180.

    Article  Google Scholar 

  70. Li, H., Li, Y., Gong, Z., & Li, X. (2013). Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate. Ecological Engineering,53(Supplement C), 39–45.

    CAS  Article  Google Scholar 

  71. Lobato, N. C. C., Villegas, E. A., & Mansur, M. B. (2015). Management of solid wastes from steelmaking and galvanizing processes: A brief review. Resources, Conservation and Recycling,102(Supplement C), 49–57.

    Article  Google Scholar 

  72. Lu, S.-G., Bai, S.-Q., & Shan, H.-D. (2008). Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag. Journal of Zhejiang University Science A,9, 125–132.

    CAS  Article  Google Scholar 

  73. Masindi, V., Osman, M. S., & Abu-Mahfouz, A. M. (2017). Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water. Desalination,424(Supplement C), 45–52.

    CAS  Article  Google Scholar 

  74. Masindi, V., Osman, M. S., Mbhele, R. N., & Rikhotso, R. (2018). Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: Validation of experimental results with a geochemical model. Journal of Cleaner Production,172(Supplement C), 2899–2909.

    CAS  Article  Google Scholar 

  75. McIntosh, S. N., & Baglin, E. G. (1992). Recovery of manganese from steel plant slag by carbamate leaching. Report of Investigation.

  76. Mercado-Borrayo, B. M., Schouwenaars, R., Litter, M. I., Montoya-Bautista, C. V., & Ramírez-Zamora, R. M. (2014). 5—Metallurgical slag as an efficient and economical adsorbent of arsenic. In S. Ahuja (Ed.), Water reclamation and sustainability (pp. 95–114). Boston: Elsevier.

    Google Scholar 

  77. Mihok, L., Demeter, P., Baricova, D., & Seilerova, K. (2006). Utilization of ironmaking and steelmaking slags. Metalurgija,45, 163–168.

    CAS  Google Scholar 

  78. Moodley, I., Sheridan, C. M., Kappelmeyer, U., & Akcil, A. (2017). Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Minerals Engineering,126, 207–220.

    Article  CAS  Google Scholar 

  79. Murthy, I. N., & Rao, J. B. (2016). Investigations on physical and chemical properties of high silica sand, Fe–Cr slag and blast furnace slag for foundry applications. Procedia Environmental Sciences,35(Supplement C), 583–596.

    CAS  Article  Google Scholar 

  80. Negim, O., Eloifi, B., Mench, M., Bes, C., Gaste, H., Motelica-Heino, M., et al. (2010). Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a Cu-contaminated soil. Journal Soil and Sediment Contamination,19, 174–187.

    CAS  Article  Google Scholar 

  81. Oh, C., Rhee, S., Oh, M., & Park, J. (2012). Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. Journal of Hazardous Materials,213–214(Supplement C), 147–155.

    Article  CAS  Google Scholar 

  82. Okada, K., Yamamoto, T., Kim, K.-H., Asaoka, S., Hayakawa, S., Takeda, K., et al. (2014). Removal of hydrogen sulfide with steelmaking slag by concurrent reactions of sulfide mineralization and oxidation. Ecological Engineering,63(Supplement C), 122–126.

    Article  Google Scholar 

  83. Orhan, G. (2005). Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy,78(3–4), 236–245.

    CAS  Article  Google Scholar 

  84. Ouda, A. S., & Abdel-Gawwad, H. A. (2017). The effect of replacing sand by iron slag on physical, mechanical and radiological properties of cement mortar. HBRC Journal,13(3), 255–261.

    Article  Google Scholar 

  85. Pan, S.-Y., Adhikari, R., Chen, Y.-H., Li, P., & Chiang, P.-C. (2016). Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. Journal of Cleaner Production,137(Supplement C), 617–631.

    CAS  Article  Google Scholar 

  86. Pap, S., Šolević Knudsen, T., Radonić, J., Maletić, S., Igić, S. M., & Turk Sekulić, M. (2017). Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. Journal of Cleaner Production,162(Supplement C), 958–972.

    CAS  Article  Google Scholar 

  87. Park, T., Ampunan, V., Maeng, S., & Chung, E. (2017). Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal. Chemosphere,167(Supplement C), 91–97.

    CAS  Article  Google Scholar 

  88. Pasetto, M., Baliello, A., Giacomello, G., & Pasquini, E. (2017). Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. Journal of Cleaner Production,166(Supplement C), 835–843.

    Article  Google Scholar 

  89. Peters, M. A., & Colo, A. (1978). Process for recovering zinc from steel-making flue dust. United States Patent 4071357.

  90. Piatak, N. M., Parsons, M. B., & Seal, R. R. (2015). Characteristics and environmental aspects of slag: A review. Applied Geochemistry,57(Supplement C), 236–266.

    CAS  Article  Google Scholar 

  91. Qiu, H., Gu, H.-H., He, E.-K., Wang, S.-Z., & Qiu, R.-L. (2012). Attenuation of metal bioavailability in acidic multi-metal contaminated soil treated with fly ash and steel slag. Pedosphere,22(4), 544–553.

    CAS  Article  Google Scholar 

  92. Rawlins, C. H. (2008). Geological sequestration of carbon dioxide by hydrous carbonate formation in steelmaking slag a dissertation. Doctoral thesis presented to the Faculty of the Graduate School of the Missouri University of Science and Technology, pp. 1–247.

  93. Reddy, A. S., Pradhan, R. K., & Chandra, S. (2006). Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder. International Journal of Mineral Processing,79, 98–105.

    CAS  Article  Google Scholar 

  94. Reis da Silva, J.-B., Gois de Carvalho, K.-M., Bicudo Filho, P.-S., de Abreu, L.-D., & Rossi, L.-A. (2007). Environmental risks analysis on LD steel making slag use for road pavement applications. Revue de Métallurgie,11, 540–550.

    Article  Google Scholar 

  95. Santamaría, A., Orbe, A., Losañez, M. M., Skaf, M., Ortega-Lopez, V., & González, J. J. (2017). Self-compacting concrete incorporating electric arc-furnace steelmaking slag as aggregate. Materials and Design,115(Supplement C), 179–193.

    Article  CAS  Google Scholar 

  96. Santos, R. M., Van Bouwel, J., Vandevelde, E., Mertens, G., Elsen, J., & Van Gerven, T. (2013). Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties. International Journal of Greenhouse Gas Control,17(Supplement C), 32–45.

    CAS  Article  Google Scholar 

  97. Sarkar, C., Basu, J. K., & Samanta, A. N. (2017). Removal of Ni2+ ion from waste water by geopolymeric adsorbent derived from LD slag. Journal of Water Process Engineering,17(Supplement C), 237–244.

    Article  Google Scholar 

  98. Senani, M., Ferhoune, N., & Guettala, A. (2016). Substitution of the natural sand by crystallized slag of blast furnace in the composition of concrete. Alexandria Engineering Journal,57, 851–857.

    Article  Google Scholar 

  99. Shen, H., & Forssberg, E. (2003). An overview of recovery of metals from slags. Waste Management,23(10), 933–949.

    CAS  Article  Google Scholar 

  100. Spooren, J., Kim, E., Horckmans, L., Broos, K., Nielsen, P., & Quaghebeur, M. (2016). In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags. Chemical Engineering Journal,303(Supplement C), 359–368.

    CAS  Article  Google Scholar 

  101. Sun, Y., Yao, M.-S., Zhang, J.-P., & Yang, G. (2011). Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chemical Engineering Journal,173(2), 437–445.

    CAS  Article  Google Scholar 

  102. Sun, S., & Yuan, Y. (1983). Study of steel slag cement. Silicates Industrials,2, 31–34.

    Google Scholar 

  103. Takahashi, T., & Yabuta, K. (2002). New applications for iron and steelmaking slag. NKK Technical Review,87, 39–44.

    Google Scholar 

  104. Tang, M.-T., Peng, J., Peng, B., Yu, D., & Tang, C.-B. (2008). Thermal solidification of stainless steelmaking dust. Transactions of the Nonferrous Metals Society of China,18, 202–206.

    CAS  Article  Google Scholar 

  105. Tsutsumi, T., Nishimoto, S., Kameshima, Y., & Miyake, M. (2014). Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption. Journal of Hazardous Materials,266(Supplement C), 174–181.

    CAS  Article  Google Scholar 

  106. Turhan, B. (2006). Use of granulated blast-furnace slag in concrete as fine aggregate. ACI Materials Journal,103, 203–208.

    Google Scholar 

  107. Ukwattage, N. L., Ranjith, P. G., & Li, X. (2017). Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement,97(Supplement C), 15–22.

    Article  Google Scholar 

  108. Velenturf, A. P. M., Archer, S. A., Gomes, H. I., Christgen, B., Lag-Brotons, A. J., & Purnell, P. (2019). Circular economy and the matter of integrated resources. Science of the Total Environment,689, 963–969.

    CAS  Article  Google Scholar 

  109. Vijayaraghavan, J., Jude, A. B., & Thivya, J. (2017). Effect of copper slag, iron slag and recycled concrete aggregate on the mechanical properties of concrete. Resources Policy,53(Supplement C), 219–225.

    Article  Google Scholar 

  110. Wang, G. C. (2016). 9—Usability criteria for slag use as a granular material. In G. C. Wang (Ed.), The utilization of slag in civil infrastructure construction (pp. 185–199). Cambridge: Woodhead Publishing.

    Google Scholar 

  111. Wang, X., & Cai, Q.-S. (2006). Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere,16(4), 519–524.

    CAS  Article  Google Scholar 

  112. Wang, H., Ding, B., Liu, X.-Y., Zhu, X., He, X.-Y., & Liao, Q. (2017). Solidification behaviors of a molten blast furnace slag droplet cooled by air. Applied Thermal Engineering,127(Supplement C), 915–924.

    Article  Google Scholar 

  113. Wang, P., Kara, S., & Hauschild, M. Z. (2018). Role of manufacturing towards achieving circular economy: The steel case. CIRP Annals,67(1), 21–24.

    Article  Google Scholar 

  114. Wang, Y., & Lin, D. (1983). The steel slag blended cement. Silicates Industrials,6, 121–126.

    Google Scholar 

  115. Worldsteel Association (2016). Retrieved September 15, 2017 from http://www.worldsteel.org/statistics/crude-steelproduction.html.

  116. Wu, Q., You, R., Clark, M., & Yu, Y. (2014). Pb(II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag. Applied Surface Science,314(Supplement C), 129–137.

    CAS  Article  Google Scholar 

  117. Xiang, J., Huang, Q., Lv, X., & Bai, C. (2018). Extraction of vanadium from converter slag by two-step sulfuric acid leaching process. Journal of Cleaner Production,170(Supplement C), 1089–1101.

    CAS  Article  Google Scholar 

  118. Xie, M., Leung, A. K., & Ng, C. W. W. (2017). Mechanisms of hydrogen sulfide removal by ground granulated blast furnace slag amended soil. Chemosphere,175(Supplement C), 425–430.

    CAS  Article  Google Scholar 

  119. Xue, Y., Hou, H., & Zhu, S. (2009). Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag. Journal of Hazardous Materials,162, 391–401.

    CAS  Article  Google Scholar 

  120. Yildirim, I. Z., & Prezzi, M. (2017). Experimental evaluation of EAF ladle steel slag as a geo-fill material: Mineralogical, physical & mechanical properties. Construction and Building Materials,154(Supplement C), 23–33.

    CAS  Article  Google Scholar 

  121. Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone,9, 107–116.

    CAS  Article  Google Scholar 

  122. Yu, J., Liang, W., Wang, L., Li, F., Zou, Y., & Wang, H. (2015). Phosphate removal from domestic wastewater using thermally modified steel slag. Journal of Environmental Sciences,31(Supplement C), 81–88.

    CAS  Article  Google Scholar 

  123. Yuan, B., Straub, C., Segers, S., Yu, Q. L., & Brouwers, H. J. H. (2017). Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International,43(8), 6039–6047.

    CAS  Article  Google Scholar 

  124. Zahar, M. S. M., Kusin, F. M., & Muhammad, S. N. (2015). Adsorption of manganese in aqueous solution by steel slag. Procedia Environmental Sciences,30(Supplement C), 145–150.

    CAS  Article  Google Scholar 

  125. Zhang, F.-S., & Itoh, H. (2006). Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere,65(1), 125–131.

    CAS  Article  Google Scholar 

  126. Zhou, W., Huang, Z., Sun, C., Zhao, H., & Zhang, Y. (2016). Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag. Bioresource Technology,214(Supplement C), 534–540.

    CAS  Article  Google Scholar 

  127. Zuo, M., Renman, G., Gustafsson, J. P., & Renman, A. (2015). Phosphorus removal performance and speciation in virgin and modified argon oxygen decarburisation slag designed for wastewater treatment. Water Research,87(Supplement C), 271–281.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Sincere thanks are due to the grant Major Project of National Water Pollution Control and Governance of Science and Technology (2017ZX07401001) and Shenzhen scientific research foundation for high-level talent (KQJSCX20180328165658476), and Shenzhen scientific fundamental research foundation (JCYJ20180306171843211) for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ji Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, J., Jiang, J. et al. The potential utilization of slag generated from iron- and steelmaking industries: a review. Environ Geochem Health 42, 1321–1334 (2020). https://doi.org/10.1007/s10653-019-00419-y

Download citation

Keywords

  • Construction
  • Environmental treatment
  • Valuable substance recovery