Skip to main content

Advertisement

Log in

The potential utilization of slag generated from iron- and steelmaking industries: a review

  • Review paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Along with iron and steel production, large amount of slag is generated. Proper management on the iron- and steelmaking slag is highly demanded due to the high cost of direct disposal of the slag to landfill, which is the most adopted management approach. In this article, the potential application of iron- and steelmaking slag has been reviewed, which included the slag utilization in construction as cement and sand, in water, soil, and gas treatment, as well as in value material recovery. In addition, the challenge and required effort to be made in iron- and steelmaking slag management have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science,166(1), 36–59.

    Article  CAS  Google Scholar 

  • Alanyali, H., Col, M., Yilmaz, M., & Karagoz, S. (2009). Concrete produced by steel-making slag (basic oxygen furnace) addition in portland cement. International Journal of Applied Ceramic Technology,6, 736–748.

    Article  CAS  Google Scholar 

  • Ali, M. T., & Shahram, S. H. (2007). Converter slag as a liming agent in the amelioration of acidic soils. International Journal of Agriculture & Biology,5, 715–720.

    Google Scholar 

  • Apul, D., Gardner, K., & Taylloreighmy, T. (2005). Simultaneous application of dissolution/precipitation and surface complexation/surface precipitation modeling to contaminant leaching. Environmental Science and Technology,39, 5736–5741.

    Article  CAS  Google Scholar 

  • Aramouni, N. A. K., Touma, J. G., Tarboush, B. A., Zeaiter, J., & Ahmad, M. N. (2018). Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews,82(Part 3), 2570–2585.

    Article  CAS  Google Scholar 

  • Baciocchi, R., Costa, G., Polettini, A., & Pomi, R. (2015). Effects of thin-film accelerated carbonation on steel slag leaching. Journal of Hazardous Materials,286(Supplement C), 369–378.

    Article  CAS  Google Scholar 

  • Balczár, I., Korim, T., Hullár, H., Boros, A., & Makó, É. (2017). Manufacture of air-cooled slag-based alkali-activated cements using mechanochemical activation. Construction and Building Materials,137(Supplement C), 216–223.

    Article  CAS  Google Scholar 

  • Bao, W., Li, H., & Zhang, Y. (2010). Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Industrial and Engineering Chemistry Research,49, 2055–2063.

    Article  CAS  Google Scholar 

  • Barca, C., Gérente, C., Meyer, D., Chazarenc, F., & Andrès, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research,46(7), 2376–2384.

    Article  CAS  Google Scholar 

  • Barca, C., Meyer, D., Liira, M., Drissen, P., Comeau, Y., Andrès, Y., et al. (2014). Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance. Ecological Engineering,68(Supplement C), 214–222.

    Article  Google Scholar 

  • Barca, C., Roche, N., Troesch, S., Andrès, Y., & Chazarenc, F. (2018). Modelling hydrodynamics of horizontal flow steel slag filters designed to upgrade phosphorus removal in small wastewater treatment plants. Journal of Environmental Management,206(Supplement C), 349–356.

    Article  CAS  Google Scholar 

  • Basu, S., Lahiri, A. K., & Seetharaman, S. (2008). Activity of iron oxide in steelmaking slag. Metallurgical and Materials Transactions B,39, 447–456.

    Article  CAS  Google Scholar 

  • Battsengel, A., Batnasan, A., Narankhuu, A., Haga, K., Watanabe, Y., & Shibayama, A. (2018). Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy, 179, 100–109.

    Article  CAS  Google Scholar 

  • Beh, C. L., Chuah, L., Choong, T. S. Y., Kamarudzaman, M. Z. B., & Abdan, K. (2010). Adsorption study of electric arc furnace slag for the removal of manganese from solution. American Journal of Applied Sciences,7, 442–446.

    Article  CAS  Google Scholar 

  • Biskri, Y., Achoura, D., Chelghoum, N., & Mouret, M. (2017). Mechanical and durability characteristics of high performance concrete containing steel slag and crystalized slag as aggregates. Construction and Building Materials,150(Supplement C), 167–178.

    Article  CAS  Google Scholar 

  • Bodurtha, P., & Brassard, P. (2000). Neutralization of acid by steel-making slags. Environmental Technology,21, 1271–1281.

    Article  CAS  Google Scholar 

  • Burciaga-Díaz, O., & Escalante-García, J. I. (2017). Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures. Cement & Concrete Composites,84(Supplement C), 157–166.

    Article  CAS  Google Scholar 

  • Cantarino, M. V., de Carvalho Filho, C., & Borges Mansur, M. (2012). Selective removal of zinc from basic oxygen furnace sludges. Hydrometallurgy,111–112(Supplement C), 124–128.

    Article  CAS  Google Scholar 

  • Carvalho, S. Z., Vernilli, F., Almeida, B., Demarco, M., & Silva, S. N. (2017). The recycling effect of BOF slag in the portland cement properties. Resources, Conservation and Recycling,127(Supplement C), 216–220.

    Article  Google Scholar 

  • Chen, S.-H., Lin, D.-F., Luo, H.-L., & Lin, Z.-Y. (2017). Application of reclaimed basic oxygen furnace slag asphalt pavement in road base aggregate. Construction and Building Materials,157(Supplement C), 647–653.

    Article  CAS  Google Scholar 

  • Claveau-Mallet, D., Courcelles, B., Pasquier, P., & Comeau, Y. (2017). Numerical simulations with the P-Hydroslag model to predict phosphorus removal by steel slag filters. Water Research,126(Supplement C), 421–432.

    Article  CAS  Google Scholar 

  • Claveau-Mallet, D., Wallace, S., & Comeau, Y. (2013). Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Research,47(4), 1512–1520.

    Article  CAS  Google Scholar 

  • Coppola, L., Buoso, A., Coffetti, D., Kara, P., & Lorenzi, S. (2016). Electric arc furnace granulated slag for sustainable concrete. Construction and Building Materials,123(Supplement C), 115–119.

    Article  Google Scholar 

  • Curkovii, L., Cerjan-Stefanovii, S., & Rastovean-Mioe, A. (2000). Batch Pb2+ and Cu2+ removal by electric furnace slag. Water Research,35, 3436–3440.

    Article  Google Scholar 

  • Da’na, E., & Awad, A. (2017). Regeneration of spent activated carbon obtained from home filtration system and applying it for heavy metals adsorption. Journal of Environmental Chemical Engineering,5(4), 3091–3099.

    Article  CAS  Google Scholar 

  • Danilov, E. V. (2003). Modern technology for recycling steelmaking slags. Metallurgist,47, 232–234.

    Article  CAS  Google Scholar 

  • Dieter, G., Karl, W., & Konrad, M. (1988). Process and device for producing granulated slag sand from blast furnace slag. Application Number: 07/004475.

  • Dimitrova, S. V. (1996). Metal sorption on Blast-furnace slag. Water Research,30, 228–232.

    Article  CAS  Google Scholar 

  • Dimitrova, S. V. (2002). Use of granular slag columns for lead removal. Water Research,36, 4001–4008.

    Article  CAS  Google Scholar 

  • Duan, J., & Su, B. (2014). Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chemical Engineering Journal,246(Supplement C), 160–167.

    Article  CAS  Google Scholar 

  • El-Naas, M. H., El Gamal, M., Hameedi, S., & Mohamed, A.-M. O. (2015). CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust. Journal of Environmental Management,156(Supplement C), 218–224.

    Article  CAS  Google Scholar 

  • Emery, J. (1992). Mineral aggregate conservation reuse and recycling. Report prepared by Geotechnical Engineering Limited for Aggregate and Petroleum Resources Section, Ontario Ministry of Natural Resources, Ontario, 1992.

  • Ferreira, V. J., Sáez-De-Guinoa Vilaplana, A., García-Armingol, T., Aranda-Usón, A., Lausín-González, C., López-Sabirón, A. M., et al. (2016). Evaluation of the steel slag incorporation as coarse aggregate for road construction: technical requirements and environmental impact assessment. Journal of Cleaner Production,130(Supplement C), 175–186.

    Article  Google Scholar 

  • Fidalgo, B., Bermudez, J. M., Arenillas, A., & Menendez, J. A. (2009). Steel-making slag as catalyst for dry reforming of CH4. In 1st Spanish national conference on advances in materials recycling and eco-energy, Madrid, November 12–13, 2009, S04-01.

  • Gahan, C. S., Cunha, M. L., & Sandström, Å. (2009). Comparative study on different steel slags as neutralising agent in bioleaching. Hydrometallurgy,95(3), 190–197.

    Article  CAS  Google Scholar 

  • Gao, H., Song, Z., Zhang, W., Yang, X., Wang, X., & Wang, D. (2017). Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove methyl orange from aqueous solution. Journal of Environmental Sciences,53(Supplement C), 68–77.

    Article  Google Scholar 

  • Geiseler, J. (1996). Use of steelworks slag in Europe. Waste Management,16, 59–63.

    Article  CAS  Google Scholar 

  • Genç-Fuhrman, H., Mikkelsen, P. S., & Ledin, A. (2007). Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Research, 41(3), 591–602.

    Article  CAS  Google Scholar 

  • Ghouleh, Z., Guthrie, R. I. L., & Shao, Y. (2017). Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete. Journal of CO2 Utilization,18(Supplement C), 125–138.

    Article  CAS  Google Scholar 

  • Goetz, E. R., & Riefler, R. G. (2014). Performance of steel slag leach beds in acid mine drainage treatment. Chemical Engineering Journal,240(Supplement C), 579–588.

    Article  CAS  Google Scholar 

  • Gomes, J. F. P., & Pinto, C. G. (2006). Leaching of heavy metals from steelmaking slags. Revista De Metalurgia,42, 409–416.

    Article  CAS  Google Scholar 

  • Gopinath, S., & Mehra, A. (2016). Carbon sequestration during steel production: Modelling the dynamics of aqueous carbonation of steel slag.”. Chemical Engineering Research and Design,115(Part A), 173–181.

    Article  CAS  Google Scholar 

  • Han, C., Wang, Z., Yang, W., Wu, Q., Yang, H., & Xue, X. (2016). Effects of pH on phosphorus removal capacities of basic oxygen furnace slag. Ecological Engineering,89(Supplement C), 1–6.

    Article  CAS  Google Scholar 

  • Han, C., Wang, Z., Yang, H., & Xue, X. (2015). Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag. Journal of Environmental Sciences,30(Supplement C), 21–29.

    Article  CAS  Google Scholar 

  • Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management,92(10), 2355–2388.

    Article  CAS  Google Scholar 

  • He, H., Tam, N. F. Y., Yao, A., Qiu, R., Li, W. C., & Ye, Z. (2017). Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere,189(Supplement C), 247–254.

    Article  CAS  Google Scholar 

  • Heikal, M., Al-Duaij, O. K., & Ibrahim, N. S. (2015). Microstructure of composite cements containing blast-furnace slag and silica nano-particles subjected to elevated thermally treatment temperature. Construction and Building Materials,93(Supplement C), 1067–1077.

    Article  Google Scholar 

  • Heribeert, M., & Kuehn, M. (2004). Iron and steel slags as sustainable construction resources and fertilizer. In SCANMET-2nd international conference on process development in iron and steel making, Sweden (pp. 347–358).

  • Hiroyuki, T., Koichi, T., & Tatsuhito, T. (2005). Steelmaking slag: uses and trends of development of uses. Current Advances in Materials and Processes,18, 1060–1072.

    Google Scholar 

  • Hocheng, H., Su, C., & Jadhav, U. U. (2014). Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere,117(Supplement C), 652–657.

    Article  CAS  Google Scholar 

  • Huijgen, W. J. J., & Comans, R. N. J. (2003). Carbon dioxide sequestration by mineral carbonation, literature review. ECN School Fossiel: Netherlands,1, 1–13.

    Google Scholar 

  • Ichikawa, H., & Morishige, H. (2002). Effective use of steelmaking dust and sludge by use of Rotary Hearth Furnace. Nippon Steel Technical Report No. 86 July 2002.

  • Jalkanen, H., Oghbasilasie, H., & Raipala, K. (2005). Recycling of steelmaking dusts-the radust concept. Journal of Mining and Metallurgy,41B, 1–16.

    Article  Google Scholar 

  • Jha, V. K., Kameshima, Y., Nakajima, A., & Okada, K. (2004). Hazardous ions uptake behavior of thermally activated steel-making slag. Journal of Hazardous Materials,114(1), 139–144.

    Article  CAS  Google Scholar 

  • Jha, V. K., Kameshima, Y., Nakajima, A., & Okada, K. (2008). Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. Journal of Hazardous Materials,156(1), 156–162.

    Article  CAS  Google Scholar 

  • Jo, Y., Kim, J., Hwang, S., & Lee, C. (2015). Anaerobic treatment of rice winery wastewater in an upflow filter packed with steel slag under different hydraulic loading conditions. Bioresource Technology,193(Supplement C), 53–61.

    Article  CAS  Google Scholar 

  • Jukes, L. M. (2003). The volume stability of modern steel making slag. Mineral Processing and Extractive Metallurgy,112, 177–197.

    Article  CAS  Google Scholar 

  • Kadirova, Z. C., Hojamberdiev, M., Bo, L., Hojiyev, R., & Okada, K. (2015). Simultaneous removal of NH4+, H2PO4− and Ni2+ from aqueous solution by thermally activated combinations of steel converter slag and spent alumina catalyst. Journal of Water Process Engineering,8(Supplement C), 151–159.

    Article  Google Scholar 

  • Kalyoncu, R. S. (2000). Slag-iron and steel. U.S. Geological survey minerals yearbook 2000 (Vol. 71, pp. 1–3).

  • Kambole, C., Paige-Green, P., Kupolati, W. K., Ndambuki, J. M., & Adeboje, A. O. (2017). Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa. Construction and Building Materials,148(Supplement C), 618–631.

    Article  CAS  Google Scholar 

  • Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia,50(Supplement C), 113–120.

    Article  CAS  Google Scholar 

  • Ke, X., Bernal, S. A., & Provis, J. L. (2016). Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research,81(Supplement C), 24–37.

    Article  CAS  Google Scholar 

  • Kim, D.-H., Shin, M.-C., Choi, H.-D., Seo, C.-I., & Baek, K. (2008). Removal mechanisms of copper using steel-making slag: adsorption and precipitation. Desalination,223, 283–289.

    Article  CAS  Google Scholar 

  • Lan, Y.-P., Liu, Q.-C., Meng, F., Niu, D.-L., & Zhao, H. (2017). Optimization of magnetic separation process for iron recovery from steel slag. Journal of Iron and Steel Research International,24(2), 165–170.

    Article  Google Scholar 

  • Le, D.-H., Sheen, Y.-N., & Bui, Q.-B. (2017). An assessment on volume stabilization of mortar with stainless steel slag sand. Construction and Building Materials,155(Supplement C), 200–208.

    Article  CAS  Google Scholar 

  • Lenz, D. M., & Martins, F. B. (2007). Lead and zinc selective precipitation from leach electric arc furnace dust solutions. Revista Materia,12, 503–509.

    Article  Google Scholar 

  • Li, Y., & Dai, W.-B. (2018). Modifying hot slag and converting it into value-added materials: A review. Journal of Cleaner Production,175(Supplement C), 176–189.

    Article  CAS  Google Scholar 

  • Li, Q., Ding, H., Rahman, A., & He, D. (2016). Evaluation of basic oxygen furnace (BOF) material into slag-based asphalt concrete to be used in railway substructure. Construction and Building Materials,115(Supplement C), 593–601.

    Article  CAS  Google Scholar 

  • Li, W., Lang, L., Wang, D., Wu, Y., & Li, F. (2018). Investigation on the dynamic shear modulus and damping ratio of steel slag sand mixtures. Construction and Building Materials,162(Supplement C), 170–180.

    Article  Google Scholar 

  • Li, H., Li, Y., Gong, Z., & Li, X. (2013). Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate. Ecological Engineering,53(Supplement C), 39–45.

    Article  CAS  Google Scholar 

  • Lobato, N. C. C., Villegas, E. A., & Mansur, M. B. (2015). Management of solid wastes from steelmaking and galvanizing processes: A brief review. Resources, Conservation and Recycling,102(Supplement C), 49–57.

    Article  Google Scholar 

  • Lu, S.-G., Bai, S.-Q., & Shan, H.-D. (2008). Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag. Journal of Zhejiang University Science A,9, 125–132.

    Article  CAS  Google Scholar 

  • Masindi, V., Osman, M. S., & Abu-Mahfouz, A. M. (2017). Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water. Desalination,424(Supplement C), 45–52.

    Article  CAS  Google Scholar 

  • Masindi, V., Osman, M. S., Mbhele, R. N., & Rikhotso, R. (2018). Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: Validation of experimental results with a geochemical model. Journal of Cleaner Production,172(Supplement C), 2899–2909.

    Article  CAS  Google Scholar 

  • McIntosh, S. N., & Baglin, E. G. (1992). Recovery of manganese from steel plant slag by carbamate leaching. Report of Investigation.

  • Mercado-Borrayo, B. M., Schouwenaars, R., Litter, M. I., Montoya-Bautista, C. V., & Ramírez-Zamora, R. M. (2014). 5—Metallurgical slag as an efficient and economical adsorbent of arsenic. In S. Ahuja (Ed.), Water reclamation and sustainability (pp. 95–114). Boston: Elsevier.

    Chapter  Google Scholar 

  • Mihok, L., Demeter, P., Baricova, D., & Seilerova, K. (2006). Utilization of ironmaking and steelmaking slags. Metalurgija,45, 163–168.

    CAS  Google Scholar 

  • Moodley, I., Sheridan, C. M., Kappelmeyer, U., & Akcil, A. (2017). Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Minerals Engineering,126, 207–220.

    Article  CAS  Google Scholar 

  • Murthy, I. N., & Rao, J. B. (2016). Investigations on physical and chemical properties of high silica sand, Fe–Cr slag and blast furnace slag for foundry applications. Procedia Environmental Sciences,35(Supplement C), 583–596.

    Article  CAS  Google Scholar 

  • Negim, O., Eloifi, B., Mench, M., Bes, C., Gaste, H., Motelica-Heino, M., et al. (2010). Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a Cu-contaminated soil. Journal Soil and Sediment Contamination,19, 174–187.

    Article  CAS  Google Scholar 

  • Oh, C., Rhee, S., Oh, M., & Park, J. (2012). Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. Journal of Hazardous Materials,213–214(Supplement C), 147–155.

    Article  CAS  Google Scholar 

  • Okada, K., Yamamoto, T., Kim, K.-H., Asaoka, S., Hayakawa, S., Takeda, K., et al. (2014). Removal of hydrogen sulfide with steelmaking slag by concurrent reactions of sulfide mineralization and oxidation. Ecological Engineering,63(Supplement C), 122–126.

    Article  Google Scholar 

  • Orhan, G. (2005). Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy,78(3–4), 236–245.

    Article  CAS  Google Scholar 

  • Ouda, A. S., & Abdel-Gawwad, H. A. (2017). The effect of replacing sand by iron slag on physical, mechanical and radiological properties of cement mortar. HBRC Journal,13(3), 255–261.

    Article  Google Scholar 

  • Pan, S.-Y., Adhikari, R., Chen, Y.-H., Li, P., & Chiang, P.-C. (2016). Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. Journal of Cleaner Production,137(Supplement C), 617–631.

    Article  CAS  Google Scholar 

  • Pap, S., Šolević Knudsen, T., Radonić, J., Maletić, S., Igić, S. M., & Turk Sekulić, M. (2017). Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. Journal of Cleaner Production,162(Supplement C), 958–972.

    Article  CAS  Google Scholar 

  • Park, T., Ampunan, V., Maeng, S., & Chung, E. (2017). Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal. Chemosphere,167(Supplement C), 91–97.

    Article  CAS  Google Scholar 

  • Pasetto, M., Baliello, A., Giacomello, G., & Pasquini, E. (2017). Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. Journal of Cleaner Production,166(Supplement C), 835–843.

    Article  Google Scholar 

  • Peters, M. A., & Colo, A. (1978). Process for recovering zinc from steel-making flue dust. United States Patent 4071357.

  • Piatak, N. M., Parsons, M. B., & Seal, R. R. (2015). Characteristics and environmental aspects of slag: A review. Applied Geochemistry,57(Supplement C), 236–266.

    Article  CAS  Google Scholar 

  • Qiu, H., Gu, H.-H., He, E.-K., Wang, S.-Z., & Qiu, R.-L. (2012). Attenuation of metal bioavailability in acidic multi-metal contaminated soil treated with fly ash and steel slag. Pedosphere,22(4), 544–553.

    Article  CAS  Google Scholar 

  • Rawlins, C. H. (2008). Geological sequestration of carbon dioxide by hydrous carbonate formation in steelmaking slag a dissertation. Doctoral thesis presented to the Faculty of the Graduate School of the Missouri University of Science and Technology, pp. 1–247.

  • Reddy, A. S., Pradhan, R. K., & Chandra, S. (2006). Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder. International Journal of Mineral Processing,79, 98–105.

    Article  CAS  Google Scholar 

  • Reis da Silva, J.-B., Gois de Carvalho, K.-M., Bicudo Filho, P.-S., de Abreu, L.-D., & Rossi, L.-A. (2007). Environmental risks analysis on LD steel making slag use for road pavement applications. Revue de Métallurgie,11, 540–550.

    Article  Google Scholar 

  • Santamaría, A., Orbe, A., Losañez, M. M., Skaf, M., Ortega-Lopez, V., & González, J. J. (2017). Self-compacting concrete incorporating electric arc-furnace steelmaking slag as aggregate. Materials and Design,115(Supplement C), 179–193.

    Article  CAS  Google Scholar 

  • Santos, R. M., Van Bouwel, J., Vandevelde, E., Mertens, G., Elsen, J., & Van Gerven, T. (2013). Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties. International Journal of Greenhouse Gas Control,17(Supplement C), 32–45.

    Article  CAS  Google Scholar 

  • Sarkar, C., Basu, J. K., & Samanta, A. N. (2017). Removal of Ni2+ ion from waste water by geopolymeric adsorbent derived from LD slag. Journal of Water Process Engineering,17(Supplement C), 237–244.

    Article  Google Scholar 

  • Senani, M., Ferhoune, N., & Guettala, A. (2016). Substitution of the natural sand by crystallized slag of blast furnace in the composition of concrete. Alexandria Engineering Journal,57, 851–857.

    Article  Google Scholar 

  • Shen, H., & Forssberg, E. (2003). An overview of recovery of metals from slags. Waste Management,23(10), 933–949.

    Article  CAS  Google Scholar 

  • Spooren, J., Kim, E., Horckmans, L., Broos, K., Nielsen, P., & Quaghebeur, M. (2016). In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags. Chemical Engineering Journal,303(Supplement C), 359–368.

    Article  CAS  Google Scholar 

  • Sun, Y., Yao, M.-S., Zhang, J.-P., & Yang, G. (2011). Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chemical Engineering Journal,173(2), 437–445.

    Article  CAS  Google Scholar 

  • Sun, S., & Yuan, Y. (1983). Study of steel slag cement. Silicates Industrials,2, 31–34.

    Google Scholar 

  • Takahashi, T., & Yabuta, K. (2002). New applications for iron and steelmaking slag. NKK Technical Review,87, 39–44.

    Google Scholar 

  • Tang, M.-T., Peng, J., Peng, B., Yu, D., & Tang, C.-B. (2008). Thermal solidification of stainless steelmaking dust. Transactions of the Nonferrous Metals Society of China,18, 202–206.

    Article  CAS  Google Scholar 

  • Tsutsumi, T., Nishimoto, S., Kameshima, Y., & Miyake, M. (2014). Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption. Journal of Hazardous Materials,266(Supplement C), 174–181.

    Article  CAS  Google Scholar 

  • Turhan, B. (2006). Use of granulated blast-furnace slag in concrete as fine aggregate. ACI Materials Journal,103, 203–208.

    Google Scholar 

  • Ukwattage, N. L., Ranjith, P. G., & Li, X. (2017). Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement,97(Supplement C), 15–22.

    Article  Google Scholar 

  • Velenturf, A. P. M., Archer, S. A., Gomes, H. I., Christgen, B., Lag-Brotons, A. J., & Purnell, P. (2019). Circular economy and the matter of integrated resources. Science of the Total Environment,689, 963–969.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, J., Jude, A. B., & Thivya, J. (2017). Effect of copper slag, iron slag and recycled concrete aggregate on the mechanical properties of concrete. Resources Policy,53(Supplement C), 219–225.

    Article  Google Scholar 

  • Wang, G. C. (2016). 9—Usability criteria for slag use as a granular material. In G. C. Wang (Ed.), The utilization of slag in civil infrastructure construction (pp. 185–199). Cambridge: Woodhead Publishing.

    Google Scholar 

  • Wang, X., & Cai, Q.-S. (2006). Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere,16(4), 519–524.

    Article  CAS  Google Scholar 

  • Wang, H., Ding, B., Liu, X.-Y., Zhu, X., He, X.-Y., & Liao, Q. (2017). Solidification behaviors of a molten blast furnace slag droplet cooled by air. Applied Thermal Engineering,127(Supplement C), 915–924.

    Article  Google Scholar 

  • Wang, P., Kara, S., & Hauschild, M. Z. (2018). Role of manufacturing towards achieving circular economy: The steel case. CIRP Annals,67(1), 21–24.

    Article  Google Scholar 

  • Wang, Y., & Lin, D. (1983). The steel slag blended cement. Silicates Industrials,6, 121–126.

    Google Scholar 

  • Worldsteel Association (2016). Retrieved September 15, 2017 from http://www.worldsteel.org/statistics/crude-steelproduction.html.

  • Wu, Q., You, R., Clark, M., & Yu, Y. (2014). Pb(II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag. Applied Surface Science,314(Supplement C), 129–137.

    Article  CAS  Google Scholar 

  • Xiang, J., Huang, Q., Lv, X., & Bai, C. (2018). Extraction of vanadium from converter slag by two-step sulfuric acid leaching process. Journal of Cleaner Production,170(Supplement C), 1089–1101.

    Article  CAS  Google Scholar 

  • Xie, M., Leung, A. K., & Ng, C. W. W. (2017). Mechanisms of hydrogen sulfide removal by ground granulated blast furnace slag amended soil. Chemosphere,175(Supplement C), 425–430.

    Article  CAS  Google Scholar 

  • Xue, Y., Hou, H., & Zhu, S. (2009). Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag. Journal of Hazardous Materials,162, 391–401.

    Article  CAS  Google Scholar 

  • Yildirim, I. Z., & Prezzi, M. (2017). Experimental evaluation of EAF ladle steel slag as a geo-fill material: Mineralogical, physical & mechanical properties. Construction and Building Materials,154(Supplement C), 23–33.

    Article  CAS  Google Scholar 

  • Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone,9, 107–116.

    Article  CAS  Google Scholar 

  • Yu, J., Liang, W., Wang, L., Li, F., Zou, Y., & Wang, H. (2015). Phosphate removal from domestic wastewater using thermally modified steel slag. Journal of Environmental Sciences,31(Supplement C), 81–88.

    Article  CAS  Google Scholar 

  • Yuan, B., Straub, C., Segers, S., Yu, Q. L., & Brouwers, H. J. H. (2017). Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International,43(8), 6039–6047.

    Article  CAS  Google Scholar 

  • Zahar, M. S. M., Kusin, F. M., & Muhammad, S. N. (2015). Adsorption of manganese in aqueous solution by steel slag. Procedia Environmental Sciences,30(Supplement C), 145–150.

    Article  CAS  Google Scholar 

  • Zhang, F.-S., & Itoh, H. (2006). Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere,65(1), 125–131.

    Article  CAS  Google Scholar 

  • Zhou, W., Huang, Z., Sun, C., Zhao, H., & Zhang, Y. (2016). Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag. Bioresource Technology,214(Supplement C), 534–540.

    Article  CAS  Google Scholar 

  • Zuo, M., Renman, G., Gustafsson, J. P., & Renman, A. (2015). Phosphorus removal performance and speciation in virgin and modified argon oxygen decarburisation slag designed for wastewater treatment. Water Research,87(Supplement C), 271–281.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincere thanks are due to the grant Major Project of National Water Pollution Control and Governance of Science and Technology (2017ZX07401001) and Shenzhen scientific research foundation for high-level talent (KQJSCX20180328165658476), and Shenzhen scientific fundamental research foundation (JCYJ20180306171843211) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, J., Jiang, J. et al. The potential utilization of slag generated from iron- and steelmaking industries: a review. Environ Geochem Health 42, 1321–1334 (2020). https://doi.org/10.1007/s10653-019-00419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00419-y

Keywords

Navigation