Modeling primary and secondary fractionation effects and atmospheric transport of polychlorinated biphenyls through single-source emissions

Abstract

The Chinese Gridded Industrial Pollutants Emission and Residue Model (ChnGIPERM) was used to investigate potential fractionation effects and atmospheric transport of polychlorinated biphenyls (PCBs) derived from single-source emissions in China. Modeling the indicative PCBs (CB28, CB101, CB153, and CB180) revealed spatiotemporal trends in atmospheric transport, gas/particle partitioning, and primary and secondary fractionation effects. These included the inference that the Westerlies and East Asian monsoons affect atmospheric transport patterns of PCBs by influencing the atmospheric transport time (ATT). In this study, dispersion pathways with long ATTs in winter tended to have short ones in summer and vice versa. The modeled partitioning of PCB congeners between gas and particles was mainly controlled by temperature, which can further influence the ATT. The potential for primary and secondary fractionation was explored by means of numerical simulations with single-source emissions. Within ChnGIPERM, these phenomena were mainly controlled by the temperature and soil organic carbon content. The secondary fractionation of PCBs is a slow process, with model results suggesting a timescale of several decades.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Backe, C., Cousins, I. T., & Larsson, P. (2004). PCB in soils and estimated soil–air exchange fluxes of selected PCB congeners in the south of Sweden. Environmental Pollution, 128(1–2), 59–72.

    CAS  Google Scholar 

  2. Bennett, D. H., McKone, T. E., Matthies, M., & Kastenberg, W. E. (1998). General formulation of characteristic travel distance for semivolatile organic chemicals in a multimedia environment. Environmental Science and Technology, 32(24), 4023–4030.

    CAS  Google Scholar 

  3. Bey, I., Jacob, D. J., Logan, J. A., & Yantosca, R. M. (2001). Asian chemical outflow to the pacific: Origins, pathways, and budgets. Journal of Geophysical Research, 106, 23097–23114.

    CAS  Google Scholar 

  4. Beyer, A., Mackay, D., Matthies, M., Wania, F., & Webster, E. (2000). Assessing long-range transport potential of persistent organic pollutants. Environmental Science and Technology, 34(4), 699–703.

    CAS  Google Scholar 

  5. Beyer, A., Wania, F., Gouin, T., Mackay, D., & Matthies, M. (2002). Selecting internally consistent physicochemical properties of organic compounds. Environmental Toxicology and Chemistry, 21(5), 941–953.

    CAS  Google Scholar 

  6. Bozlaker, A., Odabasi, M., & Muezzinoglu, A. (2008). Dry deposition and soil–air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area. Environmental Pollution, 156(3), 784–793.

    CAS  Google Scholar 

  7. Cabrerizo, A., Dachs, J., Moeckel, C., Ojeda, M. J., Caballero, G., Barceló, D., et al. (2011). Factors influencing the soil–air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environmental Science and Technology, 45(11), 4785–4792.

    CAS  Google Scholar 

  8. Cappelletti, N., Astoviza, M., Morrone, M., & Tatone, L. (2018). Urban geochemistry and potential human health risks in the Metropolitan Area of Buenos Aires: PAHs and PCBs in soil, street dust, and bulk deposition. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0163-3.

    Article  Google Scholar 

  9. Cousins, I. T., Beck, A. J., & Jones, K. C. (1999). A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air–soil interface. Science of the Total Environment, 228(1), 5–24.

    CAS  Google Scholar 

  10. Coxon, T., Goldstein, L., & Odhiambo, B. K. (2018). Analysis of spatial distribution of trace metals, PCB, and PAH and their potential impact on human health in Virginian Counties and independent cities, USA. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0172-2.

    Article  Google Scholar 

  11. Cui, S., Fu, Q., Li, Y. F., Ma, J., Tian, C., Liu, L., et al. (2017). Modeling the air–soil exchange, secondary emissions and residues in soil of polychlorinated biphenyls in China. Scientific Reports, 7(1), 221.

    Google Scholar 

  12. Falconer, R. L., & Bidleman, T. F. (1994). Vapor pressures and predicted particle/gas distributions of polychlorinated biphenyl congeners as functions of temperature and ortho-chlorine substitution. Atmospheric Environment, 28(3), 547–554.

    CAS  Google Scholar 

  13. Goldberg, E. (1975). Synthetic organohalides in the sea. Proceedings of the Royal Society of London, Series B: Biological Sciences, 189, 277–289.

    CAS  Google Scholar 

  14. Gouin, T., Mackay, D., Jones, K. C., Harner, T., & Meijer, S. N. (2004). Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants. Environmental Pollution, 128(1–2), 139–148.

    CAS  Google Scholar 

  15. Hanh, P. T. M., Nghi, D. T., Lan, T. D., Van Quan, N., & Viet, P. H. (2018). The status and distribution of PCBs along the coast of Vietnam. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0168-y.

    Article  Google Scholar 

  16. Harner, T., & Bidleman, T. F. (1998). Octanol–air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science and Technology, 32(10), 1494–1502.

    CAS  Google Scholar 

  17. Harner, T., Shoeib, M., Diamond, M., Stern, G., & Rosenberg, B. (2004). Using passive air samplers to assess urban−rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environmental Science & Technology, 38(17), 4474–4483.

    CAS  Google Scholar 

  18. Jones, K. C. (1994). Observations on long-term air–soil exchange of organic contaminants. Environmental Science and Pollution Research, 1(3), 172.

    CAS  Google Scholar 

  19. Kim, L., Jeon, J. W., Son, J. Y., Park, M. K., Kim, C. S., Jeon, H. J., et al. (2017). Monitoring and risk assessment of polychlorinated biphenyls (PCBs) in agricultural soil from two industrialized areas. Environmental Geochemistry and Health, 39(2), 279–291.

    CAS  Google Scholar 

  20. Lammel, G., & Stemmler, I. (2012). Fractionation and current time trends of PCB congeners: Evolvement of distributions 1950–2010 studied using a global atmosphere–ocean general circulation model. Atmospheric Chemistry and Physics, 12(15), 7199–7213.

    CAS  Google Scholar 

  21. Li, Y. F., Harner, T., Liu, L., Zhang, Z., Ren, N. Q., Jia, H., et al. (2010). Polychlorinated biphenyls in global air and surface soil: Distributions, air–soil exchange, and fractionation effect. Environmental Science and Technology, 44(8), 2784–2790.

    CAS  Google Scholar 

  22. Li, Z., Kong, S., Chen, L., Bai, Z., Ji, Y., Liu, J., et al. (2011). Concentrations, spatial distributions and congener profiles of polychlorinated biphenyls in soils from a coastal city-Tianjin, China. Chemosphere, 85(3), 494–501.

    CAS  Google Scholar 

  23. Liu, H., Jacob, D. J., Bey, I., Yantosca, R. M., Duncan, B. N., & Sachse, G. W. (2003). Transport pathways for Asian pollution outflow over Pacific: Interannual and seasonal variations. Journal of Geophysical Research, 108(D20), 8786.

    Google Scholar 

  24. Lohmann, R., Breivik, K., Dachs, J., & Muir, D. (2007). Global fate of POPs: Current and future research directions. Environmental Pollution, 150(1), 150–165.

    CAS  Google Scholar 

  25. Lohmann, R., Harner, T., Thomas, G. O., & Jones, K. C. (2000). A comparative study of the gas–particle partitioning of PCDD/Fs, PCBs, and PAHs. Environmental Science and Technology, 34(23), 4943–4951.

    CAS  Google Scholar 

  26. Mackay, D. (2001). Multimedia environmental models: The fugacity approach. Boca Raton: CRC Press.

    Google Scholar 

  27. Mackay, D., Shiu, W. Y., & Ma, K. C. (1992). Illustrated handbook of physical–chemical properties and environmental fate for organic chemicals. I.. Chelsea, MI: Lewis Publishers Inc.

    Google Scholar 

  28. Mackay, D., Shiu, W. Y., Ma, K. C., & Lee, S. C. (2006). Handbook of physical–chemical properties and environmental fate for organic chemicals (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  29. Meijer, S. N., Ockenden, W. A., Steinnes, E., Corrigan, B. P., & Jones, K. C. (2003). Spatial and temporal trends of POPs in Norwegian and UK background air: Implications for global cycling. Environmental Science and Technology, 37(3), 454–461.

    CAS  Google Scholar 

  30. Meijer, S. N., Steinnes, E., Ockenden, W. A., & Jones, K. C. (2002). Influence of environmental variables on the spatial distribution of PCBs in Norwegian and UK soils: Implications for global cycling. Environmental Science and Technology, 36(10), 2146–2153.

    CAS  Google Scholar 

  31. Motelay-Massei, A., Ollivon, D., Garban, B., Teil, M. J., Blanchard, M., & Chevreuil, M. (2004). Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere, 55(4), 555–565.

    CAS  Google Scholar 

  32. Pankow, J. F. (1994). An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment, 28(2), 185–188.

    CAS  Google Scholar 

  33. Pankow, J. F., & Bidleman, T. F. (1991). Effects of temperature, TSP and per cent non-exchangeable material in determining the gas–particle partitioning of organic compounds. Atmospheric Environment. Part A. General Topics, 25(10), 2241–2249.

    Google Scholar 

  34. Pokhrel, B., Gong, P., Wang, X., Chen, M., Wang, C., & Gao, S. (2018). Distribution, sources, and air–soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal. Chemosphere, 200, 532–541.

    CAS  Google Scholar 

  35. Ren, N. Q., Que, M. X., Li, Y. F., Liu, L. Y., Wang, X. N., Xu, D. D., et al. (2007). Polychlorinated biphenyls in Chinese surface soils. Environmental Science and Technology, 41(11), 3871–3876.

    CAS  Google Scholar 

  36. Scheringer, M., Salzmann, M., Stroebe, M., Wegmann, F., Fenner, K., & Hungerbühler, K. (2004). Long-range transport and global fractionation of POPs: Insights from multimedia modeling studies. Environmental Pollution, 128(1–2), 177–188.

    CAS  Google Scholar 

  37. Schuster, J. K., Gioia, R., Moeckel, C., Agarwal, T., Bucheli, T. D., Breivik, K., et al. (2011). Has the burden and distribution of PCBs and PBDEs changed in European background soils between 1998 and 2008? Implications for sources and processes. Environmental Science and Technology, 45(17), 7291–7297.

    CAS  Google Scholar 

  38. Spencer, W. F., & Cliath, M. M. (1983). Measurement of pesticide vapor pressures. In Residue reviews (pp. 57–71). New York, NY: Springer.

  39. Stemmler, I., & Lammel, G. (2012). Long-term trends of continental-scale PCB patterns studied using a global atmosphere–ocean general circulation model. Environmental Science and Pollution Research, 19(6), 1971–1980.

    CAS  Google Scholar 

  40. Sweetman, A. J., Cousins, I. T., Seth, R., Jones, K. C., & Mackay, D. (2002). A dynamic level IV multimedia environmental model: Application to the fate of polychlorinated biphenyls in the United Kingdom over a 60-year period. Environmental Toxicology and Chemistry, 21(5), 930–940.

    CAS  Google Scholar 

  41. Tian, C., Ma, J., Liu, L., Jia, H., Xu, D., & Li, Y. F. (2009). A modeling assessment of association between East Asian summer monsoon and fate/outflow of α-HCH in Northeast Asia. Atmospheric Environment, 43(25), 3891–3901.

    CAS  Google Scholar 

  42. Totten, L. A., Eisenreich, S. J., & Brunciak, P. A. (2002). Evidence for destruction of PCBs by the OH radical in urban atmospheres. Chemosphere, 47(7), 735–746.

    CAS  Google Scholar 

  43. UNEP. (2001). Final Act of the plenipotentiaries on the stockholm convention on persistent organic pollutants (p. 445). Geneva: United Nations Environment Program Chemicals.

    Google Scholar 

  44. von Waldow, H., MacLeod, M., Jones, K., Scheringer, M., & Hungerbühler, K. (2010). Remoteness from emission sources explains the fractionation pattern of polychlorinated biphenyls in the northern hemisphere. Environmental Science and Technology, 44(16), 6183–6188.

    Google Scholar 

  45. Wang, P., Li, Y., Zhang, Q., Yang, Q., Zhang, L., Liu, F., et al. (2017). Three-year monitoring of atmospheric PCBs and PBDEs at the Chinese Great Wall Station, West Antarctica: Levels, chiral signature, environmental behaviors and source implication. Atmospheric Environment, 150, 407–416.

    CAS  Google Scholar 

  46. Wang, X. P., Sheng, J. J., Gong, P., Xue, Y. G., Yao, T. D., & Jones, K. C. (2012). Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling. Environmental Pollution, 170, 145–151.

    CAS  Google Scholar 

  47. Wania, F., & Mackay, D. (1993). Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio, 22(1), 10–18.

    Google Scholar 

  48. Wania, F., & Mackay, D. (1996). Peer reviewed: Tracking the distribution of persistent organic pollutants. Environmental Science and Technology, 30(9), 390A–396A.

    CAS  Google Scholar 

  49. Wania, F., Mackay, D., McLachian, M., Sweetman, A., & Jones, K. (1999). Global modelling of polychlorinated biphenyls. WECC report, 1, 99.

    Google Scholar 

  50. Wegmann, F., Scheringer, M., & Hungerbühler, K. (2006). First investigations of mountainous cold condensation effects with the CliMoChem model. Ecotoxicology Environmental and Safety, 63(1), 42–51.

    CAS  Google Scholar 

  51. Wu, S., Xia, X., Yang, L., & Liu, H. (2011). Distribution, source and risk assessment of polychlorinated biphenyls (PCBs) in urban soils of Beijing. China. Chemosphere, 82(5), 732–738.

    CAS  Google Scholar 

  52. Xing, Y., Lu, Y. L., Dawson, R. W., Shi, Y. J., Zhang, H., Wang, T. Y., et al. (2005). A spatial temporal assessment of pollution from PCBs in China. Chemosphere, 60, 731–739.

    CAS  Google Scholar 

  53. Yadav, I. C., Devi, N. L., Li, J., Zhang, G., & Breivik, K. (2017). Possible emissions of POPs in plain and hilly areas of Nepal: Implications for source apportionment and health risk assessment. Environmental Pollution, 220, 1289–1300.

    CAS  Google Scholar 

  54. Zeng, G., Wang, W. C., Sun, Z. B., & Li, Z. X. (2011). Atmospheric circulation cells associated with anomalous East Asian winter monsoon. Advanced Atmospheric, Science, 28(4), 913–926.

    Google Scholar 

  55. Zhang, L., Ma, J., Venkatesh, S., Li, Y. F., & Cheung, P. (2008). Modeling evidence of episodic intercontinental long-range transport of lindane. Environmental Science and Technology, 42(23), 8791–8797.

    CAS  Google Scholar 

  56. Zhang, Y., Shen, H., Tao, S., & Ma, J. (2011). Modeling the atmospheric transport and outflow of polycyclic aromatic hydrocarbons emitted from China. Atmospheric Environment, 45(17), 2820–2827.

    CAS  Google Scholar 

  57. Zhao, S., Breivik, K., Liu, G., Zheng, M., Jones, K. C., & Sweetman, A. J. (2017). Long-term temporal trends of polychlorinated biphenyls and their controlling sources in China. Environmental Science and Technology, 51(5), 2838–2845.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51779047), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016001), and the Startup Foundation of Heilongjiang Postdoctoral Fellows (LBH-Q17010). Valuable comments from anonymous reviewers and editor are highly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi-Fan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Fu, Q., Tian, C. et al. Modeling primary and secondary fractionation effects and atmospheric transport of polychlorinated biphenyls through single-source emissions. Environ Geochem Health 41, 1939–1951 (2019). https://doi.org/10.1007/s10653-019-00252-3

Download citation

Keywords

  • Polychlorinated biphenyls
  • Single-source emission
  • Atmospheric transport
  • Primary fractionation
  • Secondary fractionation