Mineralogical, compositional and isotope characterization of human kidney stones (urolithiasis) in a Sri Lankan population

Abstract

In order to understand the processes of stone formation, compositional, spectroscopic, mineralogical and crystallographic characteristics of human urinary stones collected from patients in Sri Lanka were investigated in detail. The data showed that the majority of urinary calculi were calcium oxalate, either whewellite or weddellite. Other solid phases of stones were composed of struvite, uricite and hydroxylapatite. However, mixed compositions were common except for whewellite stones which occur frequently in pure form. Scanning electron microscope observations and associated energy-dispersive X-ray analyses revealed that whewellite or weddellite was well crystalized compared to other stones types, while phosphate stones were mostly cryptocrystalline. The average δ13C and δ18O of stones were − 32.2‰ (− 37.3 to − 17.4‰) and − 24.2‰ (− 26.7‰ to − 8.9‰), respectively. The δ13C values were highly depleted compared to North American and European urinary stones. This may be due to food habits of Asians who consume rice as the staple food.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abboud, I. A. (2008). Mineralogy and chemistry of urinary stones: Patients from North Jordan. Environmental Geochemistry and Health, 30(5), 445–463. https://doi.org/10.1007/s10653-007-9128-7.

    CAS  Article  Google Scholar 

  2. Abeywickarama, B., Ralapanawa, U., & Chandrajith, R. (2015). Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka. Environmental Geochemistry and Health, 38(5), 1203–1214. https://doi.org/10.1007/s10653-015-9785-x.

    CAS  Article  Google Scholar 

  3. Afaj, A. H., & Sultan, M. A. (2005). Mineralogical composition of the urinary stones from different provinces in Iraq. The Scientific World Journal, 5, 24–38. https://doi.org/10.1100/tsw.2005.2.

    CAS  Article  Google Scholar 

  4. Antonakos, A., Liarokapis, E., & Leventouri, T. (2007). Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 28(19), 3043–3054. https://doi.org/10.1016/j.biomaterials.2007.02.028.

    CAS  Article  Google Scholar 

  5. Athanasiadou, D., Godelitsas, A., Sokaras, D., Karydas, A.-G., Dotsika, E., Xanthos, S., et al. (2017). New Insights into the chemical and isotopic composition of human body biominerals. II: COM kidney stones from Greece. International Archives of Urology and Complications, 3, 020. https://doi.org/10.23937/2469-5742/1510020.

    Article  Google Scholar 

  6. Ayliffe, L. K., Cerling, T. E., Robinson, T., West, A. G., Sponheimer, M., Passey, B. H., et al. (2004). Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia, 139(1), 11–22. https://doi.org/10.1007/s00442-003-1479-x.

    CAS  Article  Google Scholar 

  7. Bazin, D., Chevallier, P., Matzen, G., Jungers, P., & Daudon, M. (2007). Heavy elements in urinary stones. Urological Research, 35(4), 179–184. https://doi.org/10.1007/s00240-007-0099-z.

    CAS  Article  Google Scholar 

  8. Bellizzi, V., De Nicola, L., Minutolo, R., Russo, D., Cianciaruso, B., Andreucci, M., et al. (1998). Effects of water hardness on urinary risk factors for kidney stones in patients with idiopathic nephrolithiasis. Nephron, 81, 66–70. https://doi.org/10.1159/000046301.

    Article  Google Scholar 

  9. Bhatt, P. A., & Paul, P. (2008). Analysis of urinary stone constituents using powder X-ray diffraction and FT-IR. Journal of Chemical Sciences, 120(2), 267–273. https://doi.org/10.1007/s12039-008-0032-1.

    CAS  Article  Google Scholar 

  10. Cerling, T. E., Wittemyer, G., Rasmussen, H. B., Vollrath, F., Cerling, C. E., Robinson, T. J., et al. (2006). Stable isotopes in elephant hair document migration patterns and diet changes. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 371–373. https://doi.org/10.1073/pnas.0509606102.

    CAS  Article  Google Scholar 

  11. Chandrajith, R., Wijewardana, G., Dissanayake, C. B., & Abeygunasekara, A. (2006). Biomineralogy of human urinary calculi (kidney stones) from some geographic regions of Sri Lanka. Environmental Geochemistry and Health, 28(4), 393–399. https://doi.org/10.1007/s10653-006-9048-y.

    CAS  Article  Google Scholar 

  12. Channa, N. A., Ghangro, A. B., Soomro, A. M., & Noorani, L. (2007). Analysis of kidney stones by FT-IR spectroscopy. JLUMHS, 6(2), 66–73.

    Google Scholar 

  13. Chatterjee, P., Chakraborty, A., & Mukherjee, A. K. (2018). Phase composition and morphological characterization of human kidney stones using IR spectroscopy, scanning electron microscopy and X-ray Rietveld analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. https://doi.org/10.1016/j.saa.2018.04.005.

    Google Scholar 

  14. Chelfouh, N., Grenier, N., Higueret, D., Trillaud, H., Levantal, O., Pariente, J. L., et al. (1998). Characterization of urinary calculi: In vitro study of” twinkling artifact” revealed by color-flow sonography. AJR. American Journal of Roentgenology, 171(4), 1055–1060.

    CAS  Article  Google Scholar 

  15. Daudon, M., Bader, C. A., & Jungers, P. (1993). Urinary calculi: Review of classification methods and correlations with etiology. Scanning Microscopy, 7(3), 1081–1106.

    CAS  Google Scholar 

  16. Deganello, S. (1981). The structure of whewellite, CaC2O4·H2O at 328 K. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 37(4), 826–829.

    Article  Google Scholar 

  17. Durgawale, P., Shariff, A., Hendre, A., Patil, S., & Sontakke, A. (2010). Chemical analysis of stones and its significance in urolithiasis. Biomedical Research, 21(3), 305–310.

    CAS  Google Scholar 

  18. Echigo, T., Kimata, M., Kyono, A., & Shimizu, M. (2005). Re-investigation of the crystal structure of whewellite [Ca(C2O4)·H2O] and the dehydration mechanism of caoxite [Ca(C2O4)·3H2O]. Mineralogical Magazine, 69(1), 77–88.

    CAS  Article  Google Scholar 

  19. Fraser, I., Meier-Augenstein, W., & Kalin, R. M. (2006). The role of stable isotopes in human identification: A longitudinal study into the variability of isotopic signals in human hair and nails. Rapid Communications in Mass Spectrometry, 20(7), 1109–1116.

    CAS  Article  Google Scholar 

  20. Giannossi, M. L., Mongelli, G., Tateo, F., & Summa, V. (2012). Mineralogical and morphological investigation of kidney stones of a Mediterranean region (Basilicata, Italy). Journal of X-Ray Science and Technology, 20(2), 175–186.

    CAS  Google Scholar 

  21. Goonewardena, S. A. S., Nissanka, A. D. N. M., Kumari, M. I. P., Liyanage, M. R. P., & De Silva, B. S. S. (2006). Upper urinary tract stones: A case control study of fluid intake in first-time stone formers. Sri Lanka Journal of Urology, 7, 14–18.

    Google Scholar 

  22. Grases, F., & Llobera, A. (1998). Experimental model to study sedimentary kidney stones. Micron, 29(2), 105–111.

    CAS  Article  Google Scholar 

  23. Hareendra, P. P. G., Hunais, M. M., Suvendiran, S., Palihakkara, S. D., & Abeygunasekera, A. M. (2015). Chemical composition of kidney stones obtained from a cohort of Sri Lankan patients. Sri Lanka Journal of Surgery. https://doi.org/10.4038/sljs.v33i2.8146.

    Article  Google Scholar 

  24. Hesse, A. (2009). Urinary stones. In F. Lang (Ed.), Encyclopedia of molecular mechanisms of disease (pp. 2144–2147). Berlin: Springer.

    Google Scholar 

  25. Hoefs, J., & Armbruster, T. (1978). 13C/12C-Verhältnisse in menschlichen Harnkonkrementen. Naturwissenschaften, 65(11), 586–589.

    CAS  Article  Google Scholar 

  26. Keshavarzi, B., Yavarashayeri, N., Irani, D., Moore, F., Zarasvandi, A., & Salari, M. (2015). Trace elements in urinary stones: A preliminary investigation in Fars Province, Iran. Environmental geochemistry and health, 37(2), 377–389. https://doi.org/10.1007/s10653-014-9654-z.

    CAS  Article  Google Scholar 

  27. Krouse, H. R., & Levinson, A. A. (1984). Geographical trends of carbon and sulphur isotope abundances in human kidney stones. Geochimica et Cosmochimica Acta, 48(1), 187–191. https://doi.org/10.1016/0016-7037(84)90360-0.

    CAS  Article  Google Scholar 

  28. Krouse, H. R., Levinson, A. A., Piggott, D., & Ueda, A. (1987). Further stable isotope investigations of human urinary stones: Comparison with other body components. Applied Geochemistry, 2(2), 205–211.

    CAS  Article  Google Scholar 

  29. Levinson, A. A., Luz, B., & Kolodny, Y. (1987). Variations in oxygen isotopic compositions of human teeth and urinary stones. Applied Geochemistry, 2(4), 367–371. https://doi.org/10.1016/0883-2927(87)90021-7.

    CAS  Article  Google Scholar 

  30. Levinson, A. A., Mino, M. P., Stams, U. K., & Hariharan, A. (1985). The mineralogy of human urinary stones from Calgary, Quito and Honolulu. American Mineralogist, 70, 630–635.

    CAS  Google Scholar 

  31. Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, G. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules. Boston: Academic Press.

    Google Scholar 

  32. Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta, 48(2), 385–390. https://doi.org/10.1016/0016-7037(84)90259-X.

    CAS  Article  Google Scholar 

  33. Matsuzaki, S., Matsushita, K., Tanikawa, K., Masuda, A., & Matsunaga, J. (1995). Sequential analysis of recurrent calcium calculi by infrared spectroscopy. International Journal of Urology, 2(4), 235–237.

    CAS  Article  Google Scholar 

  34. Maurice-Estepa, L., Levillain, P., Lacour, B., & Daudon, M. (2000). Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clinica Chimica Acta, 298(1), 1–11.

    CAS  Article  Google Scholar 

  35. Minagawa, M. (1992). Reconstruction of human diet from σ13C and σ15N in contemporary Japanese hair: A stochastic method for estimating multi-source contribution by double isotopic tracers. Applied Geochemistry, 7(2), 145–158.

    CAS  Article  Google Scholar 

  36. Munoz, J. A., & Valiente, M. (2005). Effects of trace metals on the inhibition of calcium oxalate crystallization. Urological Research, 33(4), 267–272.

    CAS  Article  Google Scholar 

  37. Nakamura, K., Schoeller, D. A., Winkler, F. J., & Schmidt, H. L. (1982). Geographical variations in the carbon isotope composition of the diet and hair in contemporary man. Biological Mass Spectrometry, 9(9), 390–394.

    CAS  Article  Google Scholar 

  38. Nardoto, G. B., Silva, S., Kendall, C., Ehleringer, J. R., Chesson, L. A., Ferraz, E. S. B., et al. (2006). Geographical patterns of human diet derived from stable isotope analysis of fingernails. American Journal of Physical Anthropology, 131(1), 137–146.

    Article  Google Scholar 

  39. Paluszkiewicz, C., Ściesiński, J., & Gałka, M. (1988). Analysis of renal stones by FTIR spectroscopy. Microchimica Acta, 94(1–6), 45–48. https://doi.org/10.1007/bf01205835.

    Article  Google Scholar 

  40. Parks, J. H., Worcester, E. M., Coe, F. L., Evan, A. P., & Lingeman, J. E. (2004). Clinical implications of abundant calcium phosphatein routinely analyzed kidney stones. Kidney International, 66(2), 777–785. https://doi.org/10.1111/j.1523-1755.2004.00803.x.

    CAS  Article  Google Scholar 

  41. Ries, J. B. (2010). Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite–aragonite seas) and its effects on marine biological calcification. Biogeosciences, 7(9), 2795. https://doi.org/10.5194/bg-7-2795-2010.

    CAS  Article  Google Scholar 

  42. Sekkoum, K., Cheriti, A., Taleb, S., & Belboukhari, N. (2011). FTIR spectroscopic study of human urinary stones from El Bayadh district (Algeria). Arabian Journal of Chemistry, 9(3), 330–334. https://doi.org/10.1016/j.arabjc.2011.10.010.

    CAS  Article  Google Scholar 

  43. Selvaraju, R., Raja, A., & Thiruppathi, G. (2013). Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 650–657. https://doi.org/10.1016/j.saa.2013.05.029.

    CAS  Article  Google Scholar 

  44. Sofia, P. G., Ionescu, I., Rodica, G., & Anisoara, P. (2010). The use of infrared spectroscopy in the investigation of urolithiasis. Revista română de medicină de laborator, 18(4/4), 67–77.

    Google Scholar 

  45. Swaddiwudhipong, W., Mahasakpan, P., Limpatanachote, P., & Krintratun, S. (2011). An association between urinary cadmium and urinary stone disease in persons living in cadmium-contaminated villages in northwestern Thailand: A population study. Environmental Research, 111(4), 579–583. https://doi.org/10.1016/j.envres.2011.01.007.

    CAS  Article  Google Scholar 

  46. Talham, D. R., Backov, R., Benitez, I. O., Sharbaugh, D. M., Whipps, S., & Khan, S. R. (2006). Role of lipids in urinary stones: Studies of calcium oxalate precipitation at phospholipid Langmuir monolayers. Langmuir, 22(6), 2450–2456. https://doi.org/10.1021/la052503u.

    CAS  Article  Google Scholar 

  47. Tokui, N., Minari, Y., Kusunoki, K., Yoshimura, T., Yamamoto, T., & Minagawa, M. (2000). Evaluation of dietary intake using carbon and nitrogen isotope analysis of human hair of Chinese living in southern part of China. Journal of UOEH, 22(3), 219–228.

    CAS  Article  Google Scholar 

  48. Wandt, M. A. E., & Underhill, L. G. (1988). Covariance biplot analysis of trace element concentrations in urinary stones. BJU International, 61(6), 474–481.

    CAS  Article  Google Scholar 

  49. Wijayarathna, K. S. N., & Abeygunasekera, A. M. (2013). Pathogenesis of nephrolithiasis. Sri Lanka Journal of Surgery, 31(3), 28–32. https://doi.org/10.1016/j.juro.2012.11.069.

    Article  Google Scholar 

  50. Wumaner, A., Keremu, A., Wumaier, D., & Wang, Q. (2014). High incidence of urinary stones in Uyghur children may be related to local environmental factors. Journal of pediatric urology, 10(2), 289–293. https://doi.org/10.1016/j.jpurol.2013.09.002.

    Article  Google Scholar 

  51. Zarasvandi, A., Carranza, E. J. M., Heidari, M., & Mousapour, E. (2014). Environmental factors of urinary stones mineralogy, Khouzestan Province, Iran. Journal of African Earth Sciences, 97, 368–376. https://doi.org/10.1016/j.jafrearsci.2014.04.031.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Dr. Stefan Krumm of GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, is acknowledged for his help in XRD analysis. The study was performed with the approval of ethics committee at the Colombo South General Hospital, in compliance with the Helsinki Declaration. The authors declare that they have no conflicts of interest. This research study was funded by a research grant from the University of Peradeniya (RG/AF 2013/71/S) offered to RC and AS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rohana Chandrajith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandrajith, R., Weerasingha, A., Premaratne, K.M. et al. Mineralogical, compositional and isotope characterization of human kidney stones (urolithiasis) in a Sri Lankan population. Environ Geochem Health 41, 1881–1894 (2019). https://doi.org/10.1007/s10653-018-0237-2

Download citation

Keywords

  • Urinary stones
  • FTIR
  • Calcium oxalate monohydrate
  • Hydroxylapatite
  • Carbon isotopes
  • Trace elements