Skip to main content

Advertisement

Log in

Interannual variation in grassland net ecosystem productivity and its coupling relation to climatic factors in China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Grassland, as an important part of land cover, plays an important role in the global carbon cycle and carbon balance. Net ecosystem productivity (NEP) is a key indicator of the carbon cycle process and an important factor in assessing ecosystem security and maintaining ecosystem balance. In this paper, Boreal Ecosystem Productivity Simulator (BEPS) combining meteorological data, leaf area index, and land cover type data were used to simulate the grassland NEP of China from 1979 to 2008. This model was also used to analyze the responses to changes in climate factors, interannual variation in carbon conversion efficiency, drought stress coefficient, and water use efficiency of grassland in China. Results showed that from 1979 to 2008, the mean annual grassland NEP was 13.6 g C/m2 with weak carbon sinks. The grassland NEP distribution increased from northwest to southeast across China. Regions with NEP of > 0 (C sink) accounted for 73.1% of the total grassland area of China. The total C sequestration reached 26.6 Tg yearly, and grassland NEP was positive from 1979 to 2008. The annual changing characteristics were analyzed. Grassland NEP was positive with carbon sink from June to September, which was negative with carbon source in the remaining months. The carbon conversion efficiency and water use efficiency of the grassland increased significantly within 30 years. NEP showed positive correlation with precipitation (accounting for 74.2% of the total grassland area was positively correlated) but weakly positive correlation with temperature (50.2% of the case). Furthermore, significant positive correlation was found between grassland NEP and precipitation, especially in northeastern and central Inner Mongolia, northern Tianshan of Xinjiang, southwestern Tibet, and southern Qinghai Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahcm, S., Stol, W., Dwgvan, K., & Bam, B. (1998). LINGRA, a sink/source model to simulate grassland productivity in Europe. European Journal of Agronomy, 9, 87–100.

    Article  Google Scholar 

  • Al, J. E., Paasche, Ø. (2007). IPCC. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 434–497). Cambridge: Cambridge University Press

  • Arora, V. K. (2003). Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agricultural and Forest Meteorology, 118, 21–47.

    Article  Google Scholar 

  • Bonan, G. B. (1995). Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. Journal of Geophysical Research: Atmospheres, 100, 2817–2831.

    Article  CAS  Google Scholar 

  • Cheng, Q., Mo, X. G., Wang, Y. F., & Lin, Z. H. (2010). Simulation of the carbon cycle in the meadow steppe dominated by Leymus Chinensis. Natural Resources Journal, 25, 60–70.

    CAS  Google Scholar 

  • Christensen, L., Coughenour, M. B., Ellis, J. E., & Chen, Z. Z. (2004). Vulnerability of the Asian typical steppe to grazing and climate change. Climatic Change, 63, 351–368.

    Article  CAS  Google Scholar 

  • Conant, R. T., Paustian, K., & Elliott, E. T. (2001). Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11, 343–355.

    Article  Google Scholar 

  • Cui, H., & Zhang, Y. H. (2016). Diurnal and seasonal dynamic variation of soil respiration and its influencing factors of different fenced enclosure years in desert steppe. Environmental Science, 37, 1507–1515.

    Google Scholar 

  • Diemer, M., & Körner, C. (1998). Transient Enhancement of carbon uptake in an Alpine grassland ecosystem under elevated CO2. Arctic and Alpine Research, 30, 381–387.

    Article  Google Scholar 

  • Eswaran, H., Berg, E. V. D., & Reich, P. (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 90, 269–273.

    Google Scholar 

  • Fang, J. Y., Piao, S. L., Tang, Z. Y., Peng, C. H., & Ji, W. (2001). Interannual variability in net primary production and precipitation science. Science, 293, 1723.

    Article  CAS  Google Scholar 

  • Fang, J., Yang, Y., Ma, W., Mohammat, A., & Shen, H. (2010). Ecosystem carbon stocks and their changes in China’s grasslands. Science China Life Sciences, 53, 757–765.

    Article  CAS  Google Scholar 

  • Geng, Y., Dong, Y., & Qi, Y. (2004). Review about the carbon cycle researches in grassland ecosystem. Progress in Geography, 23, 74–81.

    Google Scholar 

  • GLC. (2003). Global landcover classification for the year 2000. http://www-gem.jrc.it/glc2000/.

  • Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medinaelizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences, 103, 14288–14293.

    Article  CAS  Google Scholar 

  • Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48, 115–146.

    Article  CAS  Google Scholar 

  • Hao, Y. B., Wang, Y. F., & Cui, X. Y. (2010). Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in inner Mongolia, China. Journal of Plant Ecology, 34, 898–906.

    Google Scholar 

  • Harte, J., Torn, M. S., Chang, F. R., Feifarek, B., Kinzig, A. P., Shaw, R., et al. (1995). Global warming and soil microclimate: Results from a meadow-warming experiment. Ecological Applications, 5, 132–150.

    Article  Google Scholar 

  • Jda, M., Glw, P., & Romerocalcerrada, R. (2007). Regression techniques for examining land use/cover change: A case study of a Mediterranean landscape. Ecosystems, 10, 562–578.

    Article  Google Scholar 

  • Jiang, L., Guo, R., Zhu, T., Niu, X., Guo, J., & Sun, W. (2012). Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China. PLoS ONE, 7, e45205.

    Article  CAS  Google Scholar 

  • Ju, W., Chen, J. M., Black, T. A., Barr, A. G., Liu, J., & Chen, B. (2006). Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest. Agricultural and Forest Meteorology, 140, 136–151.

    Article  Google Scholar 

  • Kang, X., Hao, Y., Cui, X., Chen, H., Li, C., Rui, Y., et al. (2013). Effects of grazing on CO2 balance in a semiarid steppe: field observations and modeling. Journal of Soils and Sediments, 13, 1012–1023.

    Article  CAS  Google Scholar 

  • Knapp, A. K., Fay, P. A., Blair, J. M., Collins, S. L., Smith, M. D., Carlisle, J. D., et al. (2002). Rainfall variability, carbon cycling, and plant species diversity in a Mesic grassland. Science, 298, 2202–2205.

    Article  CAS  Google Scholar 

  • Kong, Y. H., Yao, F. J., Peng, S., Liu, Y., Dong, W. X., & Bai, L. (2010). Study on the characteristics soil carbon accumulation and conversion of carbon sink and source of grassland under different land use types. Pratacultural Science, 27(4), 40–45.

    CAS  Google Scholar 

  • Li, S. G., Asanuma, J., Eugster, W., Kotani, A., Liu, J. J., Urano, T., et al. (2005). Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 11, 1941–1955.

    Article  Google Scholar 

  • Li, D., Cao, G. M., Huang, Y., Jin, D. Y., & Ming, Z. (2010). Carbon budget of alpine shrub meadow ecosystem in Qinghai-Tibetan plateau. Acta Prataculturae Sinica, 27, 37–41.

    Google Scholar 

  • Li, G. Y., Han, H. Y., Du, Y., Hui, D. F., Xia, J. Y., Niu, S. L., et al. (2017). Effects of warming and increased precipitation on net ecosystem productivity: A long-term manipulative experiment in a semiarid grassland. Agricultural and Forest Meteorology, 232, 359–366.

    Article  Google Scholar 

  • Li, L. H., Liu, X. H., & Zuo-zhong, Chen. (1998). Study on the carbon cycle of Leymus Chinensis stppe in the Xilin River basin. Acta Phytoecologica Sinica, 40, 955–961.

    CAS  Google Scholar 

  • Li, L., Vuichard, N., Viovy, N., & Ciais, P. (2011). Importance of crop varieties and management practices: evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites. Biogeosciences, 8, 1721–1736.

    Article  CAS  Google Scholar 

  • Li, Y. Q., Zhao, H. L., Zhao, X. Y., Zhang, T. H., & Chen, Y. P. (2006). Soil respiration, carbon balance and carbon storage of sandy grassland under post-grazing natural restoration. Acta Prataculturae Sinica, 15, 25–31.

    Google Scholar 

  • Liang, Y., Ganjurjav, Zhang W. N., Gao, Q. Z., Danjiu, L. B., Xirao, Z. M., & Baima, Y. Z. (2014). A review on effect of climate change on grassland ecosystem in China. Journal of Agricultural Science and Technology, 16, 1–8.

    Google Scholar 

  • Lieth, H. (1973). Primary production: Terrestrial ecosystems. Human Ecology, 1, 303–332.

    Article  Google Scholar 

  • Liu, J., Chen, J. M., Cihlar, J., & Park, W. M. (1997). A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote sensing of environment, 62, 158–175.

    Article  Google Scholar 

  • Liu, R., Li, Y., & Wang, Q. X. (2012). Variations in water and CO2 fluxes over a saline desert in western China. Hydrological Processes, 26, 513–522.

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, R., & Chen, J. M. (2015). Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. Journal of Geophysical Research Biogeosciences, 117, 4003.

    Google Scholar 

  • Luo, Y., Sherry, R., Zhou, X., & Wan, S. (2007). Terrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Annual Review of Ecology Evolution and Systematics, 38, 683–712.

    Article  Google Scholar 

  • Matsushita, B., & Tamura, M. (2002). Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sensing of Environment, 81, 58–66.

    Article  Google Scholar 

  • Niu, S., Wu, M., Han, Y., Xia, J., Li, L., & Wan, S. (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209–219.

    CAS  Google Scholar 

  • Oberbauer, S. F., Gillespie, C. T., Cheng, W., Sala, A., Gebauer, R., & Tenhunen, J. D. (1996). Diurnal and seasonal patterns of ecosystem CO2 efflux from upland tundra in the foothills of the Brooks Range, Alaska, U.S.A. Arctic and Alpine Research, 28, 328–338.

    Article  Google Scholar 

  • Potts, D., Huxman, T. B., Weltzin, J., & Williams, D. (2006). Resilience and resistance of ecosystem functional response to a precipitation pulse in a semi-arid grassland. Journal of Ecology, 94, 23–30.

    Article  Google Scholar 

  • Raich, J. W., Tufekcioglu, A., Rustad, L. E., Huntingdon, T. G., & Boone, R. D. (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48, 71–90.

    Article  CAS  Google Scholar 

  • Rigge, M., Wylie, B., Zhang, L., & Boyte, S. P. (2013). Influence of management and precipitation on carbon fluxes in great plains grasslands. Ecological Indicators, 34, 590–599.

    Article  CAS  Google Scholar 

  • Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42, 125–154.

    Article  CAS  Google Scholar 

  • Shi, Y., Shen, Y., Kang, E., Li, D., Ding, Y., Zhang, G., et al. (2007). Recent and future climate change in Northwest China. Climatic Change, 80, 379–393.

    Article  CAS  Google Scholar 

  • Sui, X., & Zhou, G. (2013). Carbon dynamics of temperate grassland ecosystems in China from 1951 to 2007: An analysis with a process-based biogeochemistry model. Environmental Earth Sciences, 68, 521–533.

    Article  CAS  Google Scholar 

  • Wan, S., Luo, Y., & Wallace, L. L. (2002). Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology, 8, 754–768.

    Article  Google Scholar 

  • Wang, C. (2006). Simulation on the carbon and water vapor flux of the typical ecosystem by the BIOME-BGC model. Nanjing: Nanjing Agricultural University.

    Google Scholar 

  • Wang, S., Wilkes, A., Zhang, Z., Chang, X., Lang, R., Wang, Y., et al. (2011). Management and land use change effects on soil carbon in northern China’s grasslands: A synthesis. Agriculture, Ecosystems & Environment, 142, 329–340.

    Article  Google Scholar 

  • Weltzin, J. F., Loik, M. E., Schwinning, S., Williams, D. G., Fay, P. A., Haddad, B. M., et al. (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941–952.

    Article  Google Scholar 

  • Zhang, N., Zhao, Y. S., & Yu, G. R. (2009). Simulated annual carbon fluxes of grassland ecosystems in extremely arid conditions. Ecological Research, 24, 185–206.

    Article  Google Scholar 

  • Zhang, X. Z., Shi, P. L., Liu, Y. F., & Ouyang, H. (2004). CO2 Emission and carbon balance of soil in Alpine steppe ecosystem in Tibetan Plateau. Science in China, 34(S2), 193–199.

    Google Scholar 

  • Zhou, W., Gang, C. C., Chen, Y. Z., Mu, S. J., Sun, Z. G., & Li, J. L. (2014). Grassland coverage inter-annual variation and its coupling relation with hydrothermal factors in China during 1982–2010. Journal of Geographical Sciences, 24, 593–611.

    Article  Google Scholar 

  • Zhou, T., Shi, P. J., Sun, R., & Wang, S. Q. (2004). The impacts of climate change on net ecosystem production in China. Acta Geographica Sinica, 59, 357–365.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the basic science and advanced technology Fund of Chongqing Scientific Council (cstc2016jcyjA1540), the National Youth Science Fund (41501575, 41701227), Fundamental Research Program of Chongqing Municipal Education Commission (KJQN201800702, KJ1705114), and the National Key R&D Program of China (2018YFD1100301). We also thank the China Meteorological data sharing service system for granting us access to climate datasets. Finally, we would like to thank the technical support of College of Surveying and Geography, Lanzhou Jiaotong University, and Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Huang, L., Yang, H. et al. Interannual variation in grassland net ecosystem productivity and its coupling relation to climatic factors in China. Environ Geochem Health 41, 1583–1597 (2019). https://doi.org/10.1007/s10653-018-0236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0236-3

Keywords

Navigation