Skip to main content

Advertisement

Log in

Phenanthrene adsorption on soils from the Yangtze River Delta region under different pH and temperature conditions

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The phenanthrene (PHE) adsorption on soils from the Yangtze River Delta region under different pH and temperature conditions was studied in the laboratory. Results showed that the sorption of PHE on all soils was nonlinear and fitted to the Freundlich isotherm. The PHE adsorption on the soils is related to the content of organic carbons and the environmental conditions. There was a positive correlation (the correlation coefficient was 0.956) between the PHE adsorption and the soil organic carbon content. Adsorption on the soils at 15 °C ambient temperature was higher than at 25 °C, which was related to PHE solubility enthalpy. Adsorption on the soils in background solution at pH 5.0 was higher than in those at pH 6.2 and 7.5, which may be related to alteration of the hydrophobic character of humic substances. This study showed that intrinsic organic carbons influenced the adsorption of PHE, which was affected by environmental conditions, such as pH and temperature. Therefore, the characteristics of soil organic carbon should be considered first for implementing effective schemes for the remediation of contaminated soils and in the formulation of soil environmental quality standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahangar, A. G. (2010). Sorption of PAHs in the soil environment with emphasis on the role of soil organic matter: a review. World Applied Sciences Journal, 11(7), 759–765.

    Google Scholar 

  • Barnier, C., Ouvrard, S., Robin, C., & Morel, J. L. (2014). Desorption kinetics of PAHs from aged industrial soils for availability assessment. Science of the Total Environment, 470–471, 639–645.

    Article  CAS  Google Scholar 

  • Bogan, B. W., & Trbovic, V. (2003). Effect of sequestration on PAH degradability with Fenton’s reagent: Roles of total organic carbon, humin, and soil porosity. Journal of Hazardous Materials, B100, 285–300.

    Article  CAS  Google Scholar 

  • Carmichael, L. M., Christman, R. F., & Pfaender, F. K. (1997). Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soil. Environmental Science and Technology, 31, 126–132.

    Article  CAS  Google Scholar 

  • Chen, Y. N., Zhang, J. Q., Zhang, F., Li, F. X., & Zhou, M. (2018). Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China: Occurrence, sources and potential human health risk. Environmental Geochemistry and Health, 40, 791–802.

    Article  CAS  Google Scholar 

  • Chiou, C. T., McGroddy, R. L., & Kile, D. E. (1998). Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology, 32, 264–269.

    Article  CAS  Google Scholar 

  • Dexter, A. R., Richard, G., Arrouays, D., Czyz, E. A., Jolivet, C., & Duval, O. (2008). Complexed organic matter controls soil physical properties. Geoderma, 144, 620–627.

    Article  CAS  Google Scholar 

  • Francine, G., Suzimara, R., Marcelo, G., & Fernandes, A. N. (2016). Removal of pyrene from aqueous solutions by adsorption onto Brazilian peat samples. Adsorption Science & Technology, 34(9–10), 538–551.

    Google Scholar 

  • Gao, Y., Guo, X. Y., Ji, H. B., Li, C., Ding, H. J., Briki, M., et al. (2016). Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing. Atmospheric Research, 178–179, 6–16.

    Article  CAS  Google Scholar 

  • Hiller, E., Jurkovič, L., & Bartal, M. (2008). Effect of temperature on the distribution of polycyclic aromatic hydrocarbons in soil and sediment. Soil and Water Research, 3(4), 231–240.

    Article  CAS  Google Scholar 

  • Hiller, E., & Šebesta, M. (2017). Effect of temperature and soil pH on the sorption of ibuprofen in agricultural soil. Soil and Water Research, 12(2), 78–85.

    Article  CAS  Google Scholar 

  • Huang, W. L., Peng, P. A., Yu, Z. Q., & Fu, J. M. (2003). Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry, 18, 955–972.

    Article  CAS  Google Scholar 

  • Käcker, T., Haupt, E. T. K., Garms, C., Francke, W., & Steinhart, H. (2002). Structural characterization of humic acid-bound PAH residues in soil by 13C-CPMAS-NMR-spectroscopy: Evidence of covalent bonds. Chemosphere, 48, 117–131.

    Article  Google Scholar 

  • Karapanagioti, H. K., Kleineidam, S., Sabatini, D. A., Grathwohl, P., & Ligouis, B. (2000). Impacts of heterogeneous organic matter on phenanthrene sorption: equilibrium and kinetic studies with aquifer material. Environment Science and Technology, 34, 406–414.

    Article  CAS  Google Scholar 

  • Kiliç, M. G., & Hoşten, C. (2010). A comparative study of electrocoagulation and coagulation of aqueous suspensions of kaolinite powders. Journal of Hazardous Materials, 176, 735–740.

    Article  CAS  Google Scholar 

  • Kim, Y. J., & Osako, M. (2003). Leaching characteristics of polycyclic aromatic hydrocarbons (PAHs) from spiked sandy soil. Chemosphere, 51, 387–395.

    Article  CAS  Google Scholar 

  • Laor, Y., Farmer, W. J., Aochi, Y., & Strom, P. F. (1998). Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid. Water Research, 32(6), 1923–1931.

    Article  CAS  Google Scholar 

  • Lee, C. L., Kuo, L. J., Wang, H. L., & Hsieh, P. C. (2003). Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model. Water Research, 37, 4250–4258.

    Article  CAS  Google Scholar 

  • Li, J. L., & Chen, B. H. (2002). Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants. Chemical Engineering Science, 57, 2825–2835.

    Article  CAS  Google Scholar 

  • Lodge, K. B. (1989). Solubility studies using a generator column for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chemosphere, 18, 933–940.

    Article  Google Scholar 

  • Luthy, R. G., Aiken, G. R., Brussau, M. L., Cunningham, S. D., Gschwend, P. M., Pignatello, J. J., et al. (1997). Sequestration of hydrophobic organic contaminant by geosorbents. Environmental Science and Technology, 12, 3341–3347.

    Article  Google Scholar 

  • Masclet, P., Hoyau, V., & Jaffrezo, J. L. (2000). Polycyclic aromatic hydrocarbon deposition on the ice sheet of Greenland, part I: Superficial Snow. Atmospheric Environment, 34, 3195–3207.

    Article  CAS  Google Scholar 

  • Meleshyn, A., & Tunega, D. (2011). Adsorption of phenanthrene on Na-montmorillonite: A model study. Geoderma, 169, 41–46.

    Article  CAS  Google Scholar 

  • Mohamad, I., Hwejeh, I., & Nasser, M. (2011). Distribution of polycyclic aromatic hydrocarbons (PAHs) in marine shore sediments of Alkaber Aljanuby River estuary, boundary river (Syria-Lebanon). Fresenius Environmental Bulletin, 20(10), 2624–2631.

    CAS  Google Scholar 

  • Nanuam, J., Zuddas, P., Sawangwong, P., & Pachana, K. (2013). Modeling of PAHs adsorption on Thai clay minerals under seawater solution conditions. Procedia Earth and Planetary Science, 7, 607–610.

    Article  CAS  Google Scholar 

  • Ockenden, W. A., Breivik, K., Meijer, S. N., Steinnes, E., Sweetman, A. J., & Jones, K. C. (2003). The global re-cycling of persistent organic pollutants is strongly retarded by soils. Environment Pollution, 121, 75–80.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., & Xing, B. (1996). Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology, 30, 1–11.

    Article  CAS  Google Scholar 

  • Ping, L. F., Guo, Q., Chen, X. Y., Yuan, X. L., Zhang, C. R., & Zhao, H. (2017). Biodegradation of pyrene and benzo[a]pyrene in the liquid matrix and soil by a newly identified Raoultella planticola strain. 3 Biotech, 7, 56.

    Article  Google Scholar 

  • Ping, L. F., Luo, Y. M., Wu, L. H., Qian, W., Song, J., & Christie, P. (2006). Phenanthrene adsorption by soils treated with humic substances under different Ph and temperature conditions. Environmental Geochemistry and Health, 28, 189–195.

    Article  CAS  Google Scholar 

  • Ping, L. F., Luo, Y. M., Zhang, H. B., Li, Q. B., & Wu, L. H. (2007). Concentrations and distribution of polycyclic aromatic hydrocarbons in the 30 typical soil profiles of Yangtze River Delta region, China. Environmental Pollution, 147, 358–365.

    Article  CAS  Google Scholar 

  • Schlautman, M. A., & Morgan, J. J. (1993). Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environmental Science and Technology, 27, 961–969.

    Article  CAS  Google Scholar 

  • Soares, A. A., Moldrup, P., Minh, L. N., Vendelboe, A. L., Schjonning, P., & Jonge, L. W. D. (2013). Sorption of Phenanthrene on agricultural soils. Water, Air, and Soil pollution, 224, 1519–1530.

    Article  CAS  Google Scholar 

  • Tremolada, P., Guazzoni, N., Smillovich, L., Moia, F., & Comolli, R. (2012). The Effect of the organic matter composition on POP accumulation in soil. Water, Air, and Soil pollution, 223, 4539–4556.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, X., Ling, W., Liu, R., Liu, J., Kang, F. X., et al. (2017). Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere, 168, 976–987.

    Article  CAS  Google Scholar 

  • Wu, Q. H., Leung, J. Y. S., Tam, N. F. Y., Chen, S. J., Mai, B. X., Zhou, X. Z., et al. (2014). Biological risk and pollution history of polycyclic aromatic hydrocarbons (PAHs) in Nansha mangrove, South China. Marine Pollution Bulletin, 85, 92–98.

    Article  CAS  Google Scholar 

  • Yu, H. S., Zhu, L. Z., & Zhou, W. J. (2007). Enhanced desorption and biodegradation of phenanthrene in soil–water systems with the presence of anionic–nonionic mixed surfactants. Journal of Hazard Materials, 142, 354–361.

    Article  CAS  Google Scholar 

  • Zhang, D., Duan, D., Huang, Y., Yang, Y., & Ran, Y. (2016). Novel phenanthrene sorption mechanism by two pollens and their fractions. Environment Science and Technology, 50, 7305–7314.

    Article  CAS  Google Scholar 

  • Zhang, P. C., & Sparks, D. L. (1989). Kinetics and mechanisms of molybdate adsorption/desorption at the goethite/water interface using pressure-jump relaxations. Soil Science Society of America Journal, 53, 1028–1034.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (No. 21007061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Ping or Yongming Luo.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ping, L., Luo, Y. Phenanthrene adsorption on soils from the Yangtze River Delta region under different pH and temperature conditions. Environ Geochem Health 41, 267–274 (2019). https://doi.org/10.1007/s10653-018-0165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0165-1

Keywords

Navigation