Skip to main content
Log in

Feeding and metabolism effects of three common microplastics on Tenebrio molitor L.

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mealworms from three different regions: Guangzhou, Tai’an and Shenzhen, were fed with three commonly used microplastics of polystyrene (PS), polyvinyl chloride (PVC) and low-density polyethylene (LDPE) for 1 month under favorable conditions, respectively. The survival rate and average weight of mealworms, the mass loss of microplastics and the production of frass were recorded every 4 days. Samples collected were characterized by X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analyzer and gel permeation chromatography. The results showed that mealworms from Tai’an and Shenzhen could effectively metabolize the whole microplastics tested, while those from Guangzhou could only metabolize PS and LDPE. Besides, LDPE could be degraded by mealworms from Tai’an and Shenzhen, while those from Guangzhou showed no such capability, indicating that mealworms from different regions present different metabolism effects. Furthermore, PS and LDPE are more likely to be metabolized compared with PVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthony, M., Niven, S. J., Galloway, T. S., Rowland, S. J., Thompson, R. C., & Browne, M. A. (2013). Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Current Biology, 23(23), 2388–2392.

    Article  CAS  Google Scholar 

  • Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165–176.

    Article  CAS  Google Scholar 

  • Bae, D. C., & Sik, K. K. (2009). Thermal characteristics of polyvinylchloride in combustion reaction using TGA. Journal of Korea Safety Management & Science, 11(3), 217–226.

    Google Scholar 

  • Bergmann, M., Lutz, B., Tekman, M. B., & Gutow, L. (2017). Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life. Marine Pollution Bulletin, 125(1–2), 535–540.

    Article  CAS  Google Scholar 

  • Bhone, M. K., Ravi, C., Meena, K. S., Chu, S. L., & Kishore, R. S. (2012). Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology, 52(3), 411–419.

    Article  CAS  Google Scholar 

  • Boborodea, A., Mirabella, F., & O’Donohue, S. (2016). Characterization of low-density polyethylene in dibutoxymethane by high-temperature gel permeation chromatography with triple detection. Chromatographia, 79(15–16), 971–976.

    Article  CAS  Google Scholar 

  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., et al. (2011). Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental Science and Technology, 45(21), 9175–9179.

    Article  CAS  Google Scholar 

  • Browne, M. A., Galloway, T., & Thompson, R. (2007). Microplastic—An emerging contaminant of potential concern? Integrated Environmental Assessment and Management, 3(4), 559–561.

    Article  Google Scholar 

  • Carniti, P., Gervasini, A., Beltrame, P. L., & Audisio, G. (1989). Evidence of formation of radicals in the polystyrene thermodegradation. Journal of Polymer Science Part A: Polymer Chemistry, 27(11), 3865–3873.

    Article  CAS  Google Scholar 

  • Chang, E. P., & Salovey, R. (1974). Pyrolysis of poly(vinyl chloride). Journal of Polymer Science: Polymer Chemistry Edition, 12, 2927–2941.

    CAS  Google Scholar 

  • Chen, G. Z., Zhang, B. L., Ji, M. M., Wu, X. G., Zhou, J. Y., Chen, J. N., et al. (2017). Gut microbiota of polystyrene-eating mealworms analyzed by high-throughput sequencing. Microbiology China, 44(9), 2011–2018.

    Google Scholar 

  • Conti, G., Santoro, E., Resconi, L., & Zerbi, G. (1988). FTIR spectra and structure of new polystyrene—Syndiotactic polystyrene and poly-para-methyl-styrene. Microchimica Acta, 1(1–6), 297–300.

    Article  Google Scholar 

  • Dokyung, K., Yooeun, C., & Youn, J. (2017). Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna. Environmental Science and Technology, 51(21), 12852–12858.

    Article  CAS  Google Scholar 

  • Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., et al. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77(1–2), 177–182.

    Article  CAS  Google Scholar 

  • Free, C., Jensen, O., Mason, S., Eriksen, M., Williamson, N., & Boldgiv, B. (2014). High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin, 85(1), 156–163.

    Article  CAS  Google Scholar 

  • Galloway, T. S., Cole, M., & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution, 1(5), 116.

    Article  Google Scholar 

  • Gong, F. L., Zhao, C. G., Feng, M., Qin, H. L., & Yang, M. S. (2004). Synthesis and characterization of PVC/montmorillonite nanocomposite. Journal of Materials Science, 39(1), 293–294.

    Article  CAS  Google Scholar 

  • Isobe, A., Uchiyama-Matsumoto, K., Uchida, K., & Tokai, T. (2017). Microplastics in the Southern Ocean. Marine Pollution Bulletin, 114(1), 623–626.

    Article  CAS  Google Scholar 

  • Ivar, J. A., & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185, 352–364.

    Article  CAS  Google Scholar 

  • Jeon, H. J., & Kim, M. N. (2013). Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation. Biodegradation, 24(1), 89–98.

    Article  CAS  Google Scholar 

  • Leung, J., & Chan, K. Y. K. (2017). Microplastics reduced posterior segment regeneration rate of the polychaete Perinereis aibuhitensis. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2017.10.072.

    Article  Google Scholar 

  • Lwanga, E. H., Vega, J., Quej, V., Chi, J., del Cid, L., Chi, C., et al. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1), 14071.

    Article  CAS  Google Scholar 

  • Manojlovic, B. (1988). Influence of food and temperature on post-embryonal survival of yellow mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae). Zastita bilja, 183(39), 43–53.

    Google Scholar 

  • Martin, W., & Scott, L. (2017). Freshwater microplastics: Emerging environmental contaminants? The handbook of environmental chemistry (Vol. 58). Frankfurt: Springer.

    Google Scholar 

  • McNeill, I. C., Zulfiqar, M., & Kousar, T. (1990). A detailed investigation of the products of the thermal degradation of polystyrene. Polymer Degradation and Stability, 28(2), 131–151.

    Article  CAS  Google Scholar 

  • Moon, J., & Jeon, Y. (2008). Characterization of superlattices of monodisperse Fe3O4 nanoparticles in a polystyrene matrix with TEM and XRD. Superlattices and Microstructures, 43(2), 141–145.

    Article  CAS  Google Scholar 

  • Morales-Ramos, J., & Rojas, M. (2015). Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Economic Entomology, 108(5), 2259–2267.

    Article  CAS  Google Scholar 

  • Nishizaki, H., & Yoshida, K. (1981). Effect of molecular-weight on various TGA methods in polystyrene degradation. Journal of Applied Polymer Science, 26(10), 3503–3504.

    Article  CAS  Google Scholar 

  • Parthasarathy, V., Dhanalakshmi, V., & Anbarasan, R. (2013). Thermal, melting and crystallinity behavior of esters grafted LDPE by thermolysis method. International Journal of Plastics Technology, 17(1), 61–74.

    Article  CAS  Google Scholar 

  • Phua, S. K., Castillo, E., Anderson, J., & Hiltner, A. (1987). Biodegradation of a polyurethane in vitro. Journal of Biomedical Materials Research, 21(2), 231–246.

    Article  CAS  Google Scholar 

  • Pielou, D., & Gunn, D. (1940). The humidity behaviour of the mealworm beetle, Tenebrio molitor L. I. The reaction to differences of humidity. Journal of Experimental Zoology, 17(3), 286–294.

    Google Scholar 

  • Punzo, F., & Mutchmor, J. A. (1980). Effects of temperature, relative humidity and period of exposure on the survival capacity of Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of the Kansas Entomological Society, 53(2), 260–270.

    Google Scholar 

  • Reichert, J., Schellenberg, J., Schubert, P., & Wilke, T. (2017). Responses of reef building corals to microplastic exposure. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.11.006.

    Article  Google Scholar 

  • Roovers, J., & Toporowski, P. M. (1981). Preparation and characterization of H-shaped polystyrene. Macromolecules, 14(5), 1174–1178.

    Article  CAS  Google Scholar 

  • Sakai, W., Sadakane, T., Nishimoto, W., Nagata, M., & Tsutsumi, N. (2002). Photosensitized degradation and crosslinking of linear aliphatic polyesters studied by GPC and ESR. Polymer, 43(23), 6231–6238.

    Article  CAS  Google Scholar 

  • Satchwill, T., & Harrison, D. J. (1986). Synthesis and characterization of new polyvinylchloride membranes for enhanced adhesion of electrode surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 202(1–2), 75–81.

    Article  CAS  Google Scholar 

  • Slichter, W. P., & Mandell, E. R. (1958). Molecular structure and motion in irradiated polyethylene. Journal of Physical Chemistry, 62(3), 334–340.

    Article  CAS  Google Scholar 

  • Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M., et al. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proceeding of the National Academy of Sciences of the United States of America, 113(9), 2430–2435.

    Article  CAS  Google Scholar 

  • Syberg, K., Nielsen, A., Khan, F. R., Banta, G. T., Palmqvist, A., & Jepsen, P. M. (2017). Microplastic potentiates triclosan toxicity to the marine copepod Acartia tonsa (Dana). Journal of Toxicology and Environmental Health-Part A-Current Issues, 80(23–24), 1369–1371.

    Article  CAS  Google Scholar 

  • Van Cauwenberghe, L., Vanreusel, A., Mees, J., & Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182, 495–499.

    Article  CAS  Google Scholar 

  • Waller, C. L., Griffiths, H. J., Waluda, C. M., Thorpe, S. E., Loaiza, I., Moreno, B., et al. (2017). Microplastics in the Antarctic marine system: An emerging area of research. Science of the Total Environment, 598, 220–227.

    Article  CAS  Google Scholar 

  • Williams, P. T., & Williams, E. A. (1999). Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. Pyrolysis, 51(1–2), 107–126.

    Article  CAS  Google Scholar 

  • Wooseok, L. (2017). A study of functionality and stability of LDPE-nano TiO2 composite film. Journal of Korea Society of Packaging Science & Technology, 23(2), 67–74.

    Article  Google Scholar 

  • Yang, S. S., Brandon, A. M., Flanagan, J., Yang, J., Ning, D. L., Cai, S. Y., et al. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979–989.

    Article  CAS  Google Scholar 

  • Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y. L., Gao, L. C., et al. (2015a). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environmental Science and Technology, 49(20), 12080–12086.

    Article  CAS  Google Scholar 

  • Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y. L., Gao, L. C., et al. (2015b). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of Gut Microorganisms. Environmental Science and Technology, 49(20), 12087–12093.

    Article  CAS  Google Scholar 

  • Zhang, K., Hu, R. Q., Cai, M. M., Zheng, L. Y., Yu, Z. N., & Zhang, J. B. (2017). Degradation of plastic film containing polyethylene (PE) by yellow mealworms. Chemistry & Bioengineering, 34(4), 47–49.

    Google Scholar 

  • Ziajahromi, S., Kumar, A., Neale, P., & Leusch, F. (2017). Impact of microplastic beads and fibers on Waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: Implications of single and mixture exposures. Environmental Science and Technology, 51(22), 13397–13406.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the sponsorship from Shenzhen Municipal Development and Reform Commission (Discipline construction of watershed ecological engineering).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huchun Tao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 17828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Tao, H. & Wong, M.H. Feeding and metabolism effects of three common microplastics on Tenebrio molitor L.. Environ Geochem Health 41, 17–26 (2019). https://doi.org/10.1007/s10653-018-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0161-5

Keywords

Navigation