Skip to main content
Log in

Sediment quality, elemental bioaccumulation and antimicrobial properties of mangroves of Indian Sundarban

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mangroves have wide applications in traditional medicines due to their several therapeutic properties. Potentially toxic elements (PTEs), in mangrove habitats, need serious concern because of their toxicity, bioaccumulation capacity and ecotoxicological risks. In the current study, we aimed to examine sediment quality and bioaccumulation of PTEs in a mangrove-dominated habitat of Sundarban, India, and their relation with antimicrobial property of ten mangrove species of the region. Antimicrobial activity of different solvent fractions of mangrove leaves was assessed against seven microorganisms. The highest antimicrobial activity was detected in ethyl acetate and acetone-extracted fractions of Avicennia alba. Various sediment quality indices revealed progressively deteriorating nature of surface sediment having moderate contamination, however, low ecotoxicological risk. The accumulation factors (AF) for different PTEs indicate a gradual metal bioaccumulation in leaf tissue. Antimicrobial activities indicated both positive and negative correlations with manganese (Mn), copper (Cu), iron (Fe) and zinc (Zn) concentrations of mangrove species. Concentration of Mn showed a significant correlation with almost all the fractions, whereas Cu had correlation with ethyl acetate, acetone and methanol fractions (P < 0.05). The AF of Mn and Cu exhibited correlation with antimicrobial activities of acetone and methanol fractions, whereas Fe and Zn had correlation with hexane and ethyl acetate fractions. Overall, Mn, Fe, Cu and Zn concentrations of Acanthus ilicifolius and Avicennia alba leaves and in the surface sediments demonstrated the strongest association (P < 0.05) with their antimicrobial activity as also depicted in correlation and cluster analysis studies. Thus, this study will help to establish a link between the PTEs in mangrove ecosystem with their bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Agoramoorthy, G., Chen, F. A., & Hsu, M. J. (2008). Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution, 155(2), 320–326.

    Article  CAS  Google Scholar 

  • Akhand, A., Chanda, A., Dutta, S., Hazra, S., & Sanyal, P. (2012). Comparative study of heavy metals in selected mangroves of Sundarban ecosystem, India. Journal of Environmental Biology, 33, 1045–1049.

    CAS  Google Scholar 

  • Altundag, H., Albayrak, S., Dundar, M. S., Tuzen, M., & Soylak, M. (2015). Investigation of the influence of selected soil and plant properties from sakarya, turkey, on the bioavailability of trace elements by applying an in vitro digestion model. Biological Trace Element Research, 168(1), 276–285.

    Article  CAS  Google Scholar 

  • Antizar-Ladislao, B., Mondal, P., Mitra, S., & Sarkar, S. K. (2015). Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India. Marine Pollution Bulletin, 101(2), 886–894.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Golia, E. E., Shaheen, S. M., & Rinklebe, J. (2017a). Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environmental Geochemistry and Health, 39(2), 319–330.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., et al. (2017b). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621–645.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. (2017c). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200.

    Article  CAS  Google Scholar 

  • Arivuselvan, N., Silambarasan, D., Govindan, T., & Kathiresan, K. (2011). Antibacterial activity of mangrove leaf and bark extracts against human pathogens. Advances in Biological Research, 5(5), 251–254.

    Google Scholar 

  • Ayodele, J. T., & Bayero, A. S. (2010). Manganese concentrations in hair and fingernail of some Kano inhabitants. Journal of Applied Sciences and Environmental Management, 14(1), 17–21.

    Article  CAS  Google Scholar 

  • Badarudeen, A., Sajan, K., Srinivas, R., Maya, K., & Padmalal, D. (2014). Environmental significance of heavy metals in leaves and stems of Kerala mangroves, SW Coast of India.

  • Bakshi, M., & Chaudhuri, P. (2014). Antimicrobial potential of leaf extracts of ten mangrove species from Indian Sundarban. Internationl Journal of Pharma and Bio Science, 5(1), 294–304.

    Google Scholar 

  • Bakshi, M., Ghosh, S., & Chaudhuri, P. (2015). Green synthesis, characterization and antimicrobial potential of sliver nanoparticles using three mangrove plants from Indian Sundarban. BioNanoScience, 5(3), 162–170.

    Article  Google Scholar 

  • Bakshi, M., Ram, S. S., Ghosh, S., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2017). Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban. Environmental Monitoring and Assessment, 189(5), 221.

    Article  CAS  Google Scholar 

  • Bandaranayake, W. M. (1998). Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2(3), 133–148.

    Article  Google Scholar 

  • Bandaranayake, W. M. (2002). Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecology and Management, 10(6), 421–452.

    Article  CAS  Google Scholar 

  • Banerjee, L. K., Sastry, A. R. K., & Nayar, M. P. (1989). Mangroves in India: identification manual. Calcutta: Botanical Survey of India.

    Google Scholar 

  • Banerjee, K., Senthilkumar, B., Purvaja, R., & Ramesh, R. (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, northeast coast of India. Environmental Geochemistry and Health, 34(1), 27–42.

    Article  CAS  Google Scholar 

  • Bayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environment International, 48, 84–101.

    Article  CAS  Google Scholar 

  • Birch, G. F. (2016). Determination of sediment metal background concentrations and enrichment in marine environments—a critical review. The Science of the Total Environment, 580, 13–831.

    Google Scholar 

  • Bobbarala, V., Vadlapudi, V. R., & Naidu, C. K. (2009). Antimicrobial potentialities of mangrove plant Avicennia marina. Journal of Pharmacy Research, 2(6), 1019–1021.

    Google Scholar 

  • Bodin, N., N’Gom-Kâ, R., Kâ, S., Thiaw, O. T., De Morais, L. T., Le Loc’h, F., et al. (2013). Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere, 90(2), 150–157.

    Article  CAS  Google Scholar 

  • Borkow, G., Zatcoff, R. C., & Gabbay, J. (2009). Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Medical Hypotheses, 73(6), 883–886.

    Article  CAS  Google Scholar 

  • Chakraborty, D., Bhar, S., Majumdar, J., & Santra, S. C. (2013). Heavy metal pollution and phytoremediation potential of Avicennia officinalis L. in the southern coast of the Hoogly estuarine system. International Journal of Environmental Science, 3(6), 2291–2303.

    Google Scholar 

  • Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., et al. (2009). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150(1), 307–322.

    Article  CAS  Google Scholar 

  • Chatterjee, M. V. S. F. E., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., et al. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33(3), 346–356.

    Article  CAS  Google Scholar 

  • Chaturvedi, U. C., Shrivastava, R., & Upreti, R. K. (2004). Viral infections and trace elements: A complex interaction. Current Science, 87(11), 1536–1554.

    CAS  Google Scholar 

  • Chaudhuri, P., & Guha, S. (2010). Potentiality of mangrove plant extracts for biocontrol of a pathogenic fungi, Fusarium oxysporum. Science and Culture, 76(7–8), 271–274.

    Google Scholar 

  • Chaudhuri, P., Nath, B., & Birch, G. (2014). Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Marine Pollution Bulletin, 79(1), 284–292.

    Article  CAS  Google Scholar 

  • Chen, K. S., Tseng, C. L., & Lin, T. H. (1993). Trace elements in natural drugs determined by INAA. Journal of Radioanalytical and Nuclear Chemistry, 170(1), 265–280.

    Article  CAS  Google Scholar 

  • Cheng, W. H., & Yap, C. K. (2015). Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia. Chemosphere, 135, 156–165.

    Article  CAS  Google Scholar 

  • Choudhury, S., Sree, A., Mukherjee, S. C., Pattnaik, P., & Bapuji, M. (2005). In vitro antibacterial activity of extracts of selected marine algae and mangroves against fish pathogens. Asian Fisheries Science, 18(3/4), 285–294.

    Google Scholar 

  • Chowdhury, R., Favas, P. J., Jonathan, M. P., Venkatachalam, P., Raja, P., & Sarkar, S. K. (2017). Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland. Marine Pollution Bulletin, 124(2), 1078–1088.

    Article  CAS  Google Scholar 

  • Chuang, I. C., Chen, K. S., Huang, Y. L., Lee, P. N., & Lin, T. H. (2000). Determination of trace elements in some natural drugs by atomic absorption spectrometry. Biological Trace Element Research, 76(3), 235–244.

    Article  CAS  Google Scholar 

  • Cobanoglu, U., Demir, H., Sayir, F., Duran, M., & Mergan, D. (2010). Some mineral, trace element and heavy metal concentrations in lung cancer. Asian Pacific Journal of Cancer Prevention: APJCP, 11(5), 1383–1388.

    Google Scholar 

  • Datta, D., Chattopadhyay, R. N., & Deb, S. (2011). Prospective livelihood opportunities from the mangroves of the Sunderbans, India. Research Journal of Environmental Sciences, 5(6), 536.

    Article  Google Scholar 

  • Eldeen, I. M., & Effendy, M. A. (2013). Antimicrobial agents from mangrove plants and their endophytes. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (pp. 872–882). Spain: Formatex Research Centre.

    Google Scholar 

  • Emsley, J. (2011). Nature’s building blocks: an AZ guide to the elements. Oxford: Oxford University Press.

    Google Scholar 

  • Farsad, F., Karbassi, A., Monavari, S. M., Mortazavi, M. S., & Farshchi, P. (2011). Development of a new pollution index for heavy metals in sediments. Biological Trace Element Research, 143(3), 1828–1842.

    Article  CAS  Google Scholar 

  • Ferati, F., Kerolli-Mustafa, M., & Kraja-Ylli, A. (2015). Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environmental Monitoring and Assessment, 187(6), 338.

    Article  CAS  Google Scholar 

  • Ghosh, S., Bakshi, M., Bhattacharyya, S., Nath, B., & Chaudhuri, P. (2015). A review of threats and vulnerabilities to mangrove habitats: with special emphasis on east coast of India. Journal of Earth Science and Climate Change, 6(4), 270.

    Article  Google Scholar 

  • Ghosh, S., Bakshi, M., Kumar, A., Ramanathan, A. L., Biswas, J. K., Bhattacharyya, S., et al. (2018). Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly–Matla estuarine system, India. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0119-7.

    Article  Google Scholar 

  • Ghosh, S., Ram, S. S., Bakshi, M., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2016). Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary, India. Marine Pollution Bulletin, 109(1), 539–549.

    Article  CAS  Google Scholar 

  • Giordani, P., Minganti, V., Brignole, D., Malaspina, P., Cornara, L., & Drava, G. (2017). Is there a risk of trace element contamination in herbal preparations? A test study on the lichen Cetraria islandica. Chemosphere, 181, 778–785.

    Article  CAS  Google Scholar 

  • Gołdyn, B., Chudzińska, M., Barałkiewicz, D., & Celewicz-Gołdyn, S. (2015). Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicology and Environmental Safety, 118, 103–111.

    Article  CAS  Google Scholar 

  • Gong, Q. J., Deng, J., Xiang, Y. C., Wang, Q. F., & Yang, L. Q. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19, 230–241.

    Article  CAS  Google Scholar 

  • Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquatic Sciences-Research Across Boundaries, 68(3), 338–354.

    Article  Google Scholar 

  • Gowrishankar, R., Kumar, M., Menon, V., Divi, S. M., Saravanan, M., Magudapathy, P., et al. (2010). Trace element studies on Tinospora cordifolia (Menispermaceae), Ocimum sanctum (Lamiaceae), Moringa oleifera (Moringaceae), and Phyllanthus niruri (Euphorbiaceae) using PIXE. Biological Trace Element Research, 133(3), 357–363.

    Article  CAS  Google Scholar 

  • Guo, W., Huo, S., Xi, B., Zhang, J., & Wu, F. (2015). Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: distribution, bioavailability, and risk. Ecological Engineering, 81, 243–255.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Han, Y., Nishibe, S., Noguchi, Y., & Jin, Z. (2001). Flavonol glycosides from the stems of Trigonella foenum-graecum. Phytochemistry, 58(4), 577–580.

    Article  CAS  Google Scholar 

  • Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–266.

    Article  CAS  Google Scholar 

  • He, B., Li, R., Chai, M., & Qiu, G. (2014). Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environmental Geochemistry and Health, 36(3), 467–476.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Hoque, M. F. (2015). Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environmental Earth Sciences, 73(4), 1837–1848.

    Article  CAS  Google Scholar 

  • Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89(1), 23–30.

    Article  Google Scholar 

  • Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C., & Yang, Z. P. (2014). Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14(6), 1599–1610.

    Article  Google Scholar 

  • Khajure, P. V., & Rathod, J. L. (2010). Antimicrobial activity of extracts of Acanthus ilicifolius extracted from the mangroves of Karwar coast Karnataka. Recent Research in Science and Technology, 2(6), 98–99.

    Google Scholar 

  • Lacerda, L. D., & Abrao, J. J. (1984). Heavy metal accumulation by mangrove and saltmarsh intertidal sediments. Revista Brasileira de Botanica, 7, 49–52.

    Google Scholar 

  • Lajayer, B. A., Ghorbanpour, M., & Nikabadi, S. (2017). Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety, 145, 377–390.

    Article  CAS  Google Scholar 

  • Liebezeit, G., & Rau, M. T. (2006). New Guinean mangroves—Traditional usage and chemistry of natural products. Senckenbergiana maritima, 36(1), 1–10.

    Article  Google Scholar 

  • Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Söderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31(6), 805–812.

    Article  CAS  Google Scholar 

  • Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97.

    Article  Google Scholar 

  • Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment, 4(5), 1019–1039.

    Article  Google Scholar 

  • Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5(4), 253–278.

    Article  CAS  Google Scholar 

  • MacFarlane, G. R., Koller, C. E., & Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere, 69(9), 1454–1464.

    Article  CAS  Google Scholar 

  • Mahdavian, K., Ghaderian, S. M., & Torkzadeh-Mahani, M. (2017). Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. Journal of Soils and Sediments, 17(5), 1310–1320.

    Article  CAS  Google Scholar 

  • Manna, S., Mondal, P. P., Mukhopadhyay, A., Akhand, A., Hazra, S., & Mitra, D. (2013). Vegetation cover change analysis from multitemporal satellite data in Jharkhali Island, Sundarbans, India. Indian Journal of Geo-Marine Sciences, 42(3), 331–342.

    Google Scholar 

  • Massolo, S., Bignasca, A., Sarkar, S. K., Chatterjee, M., Bhattacharya, B. D., & Alam, A. (2012). Geochemical fractionation of trace elements in sediments of Hugli River (Ganges) and Sundarban wetland (West Bengal, India). Environmental Monitoring and Assessment, 184(12), 7561–7577.

    Article  CAS  Google Scholar 

  • Menghan, W., Stefano, A., Annamaria, L., Claudia, C., Antonio, C., Wanjun, L., et al. (2015). Compositional analysis and pollution impact assessment: A case study in the Gulfs of Naples and Salerno. Estuarine, Coastal and Shelf Science, 160, 22–32.

    Article  CAS  Google Scholar 

  • Mitra, A., Barua, P., Zaman, S., & Banerjee, K. (2012). Analysis of trace metals in commercially important crustaceans collected from UNESCO protected world heritage site of Indian Sundarbans. Turkish Journal of Fisheries and Aquatic Sciences, 12(1), 53–66.

    Article  Google Scholar 

  • Mondal, C. K., &, Mondal. B. (2011). Ethno-traditional medicinal uses of mangrove plants of Sundarbans-a study. In Proceedings of the international symposium on minor fruits and medicinal plants for health and ecological security (ISMF & MP), West Bengal, India, (pp. 91–93). Bidhan Chandra Krishi Viswandyalaya.

  • Moore, F., Akhbarizadeh, R., Keshavarzi, B., & Tavakoli, F. (2015). Potential health risk of herbal distillates and decoctions consumption in Shiraz, Iran. Biological Trace Element Research, 167(2), 326–337.

    Article  CAS  Google Scholar 

  • Mulaudzi, R. B., Tshikalange, T. E., Olowoyo, J. O., Amoo, S. O., & Du Plooy, C. P. (2017). Antimicrobial activity, cytotoxicity evaluation and heavy metal content of five commonly used South African herbal mixtures. South African Journal of Botany, 112, 314–318.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Naeem, A., Rehman, M. Z. U. S., Akhtar, T., Ok, Y. S., & Rengel, Z. (2016). Genetic variation in cadmium accumulation and tolerance among wheat cultivars at the seedling stage. Communications in Soil Science and Plant Analysis, 47(5), 554–562.

    Article  CAS  Google Scholar 

  • Naskar, K., Mandal, R., & Ghosh, A. (2002). Important medicinal plants from Indian Sunderbans. In Proceedings of national seminar and workshop on Indian systems of medicine and homeopathy, Ramakrishna Mission Ashrama, Narendrapur, West Bengal, India.

  • Nath, B., Birch, G., & Chaudhuri, P. (2013). Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites. Science of the Total Environment, 463, 667–674.

    Article  CAS  Google Scholar 

  • Nath, B., Birch, G., & Chaudhuri, P. (2014a). Assessment of sediment quality in Avicennia marina-dominated embayments of Sydney Estuary: the potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination. Science of the Total Environment, 472, 1010–1022.

    Article  CAS  Google Scholar 

  • Nath, B., Chaudhuri, P., & Birch, G. (2014b). Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia. Ecotoxicology and Environmental Safety, 107, 284–290.

    Article  CAS  Google Scholar 

  • Obiajunwa, E., Adebajo, A., & Omobuwajo, O. (2002). Essential and trace element contents of some Nigerian medicinal plants. Journal of Radioanalytical and Nuclear Chemistry, 252(3), 473–476.

    Article  CAS  Google Scholar 

  • Prabhu, V. V., & Guruvayoorappan, C. (2013). Inhibition of metastatic lung cancer in C57BL/6 mice by marine mangrove Rhizophora apiculata. Asian Pacific Journal of Cancer Prevention, 14(3), 1833–1840.

    Article  Google Scholar 

  • Pramanick, P., Zaman, S., Rudra, T., Guha, A., & Mitra, A. (2015). Heavy metals in a dominant seaweed species from the Islands of Indian Sundarbans. International Journal of Life Science and Pharma Research, 5(2), 64–71.

    Google Scholar 

  • Pytlakowska, K., Kita, A., Janoska, P., Połowniak, M., & Kozik, V. (2012). Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chemistry, 135(2), 494–501.

    Article  CAS  Google Scholar 

  • Qi, H. X., Li, H. Z., Ma, P., & You, J. (2015). Integrated sediment quality assessment through biomarker responses and bioavailability measurements: Application in Tai Lake, China. Ecotoxicology and Environmental Safety, 119, 148–154.

    Article  CAS  Google Scholar 

  • Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecological Engineering, 5(1), 5–12.

    Article  Google Scholar 

  • Rajan, J. P., Singh, K. B., Kumar, S., & Mishra, R. K. (2014). Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India. Asian Pacific Journal of Tropical Medicine, 7, S410–S414.

    Article  CAS  Google Scholar 

  • Rajurkar, N. S., & Damame, M. M. (1998). Mineral content of medicinal plants used in the treatment of diseases resulting from urinary tract disorders. Applied Radiation and Isotopes, 49(7), 773–776.

    Article  CAS  Google Scholar 

  • Ramesh, R., Ramanathan, A. L., James, R. A., Subramanian, V., Jacobsen, S. B., & Holland, H. D. (1999). Rare earth elements and heavy metal distribution in estuarine sediments of east coast of India. Hydrobiologia, 397, 89–99.

    Article  CAS  Google Scholar 

  • Ravisankar, R., Sivakumar, S., Chandrasekaran, A., Kanagasabapathy, K. V., Prasad, M. V. R., & Satapathy, K. K. (2015). Statistical assessment of heavy metal pollution in sediments of east coast of Tamilnadu using energy dispersive X-ray fluorescence spectroscopy (EDXRF). Applied Radiation and Isotopes, 102, 42–47.

    Article  CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. D. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science and Technology, 34(24), 5084–5091.

    Article  CAS  Google Scholar 

  • Reimann, C., Englmaier, P., Fabian, K., Gough, L., Lamothe, P., & Smith, D. (2015). Biogeochemical plant–soil interaction: variable element composition in leaves of four plant species collected along a south–north transect at the southern tip of Norway. Science of the Total Environment, 506, 480–495.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Knox, A. S., & Paller, M. (2017). Trace elements in waterlogged soils and sediments: CRC Press. New York: Taylor & Francis Group.

    Google Scholar 

  • Rinklebe, J., & Shaheen, S. M. (2017). Geochemical distribution of Co, Cu, Ni, and Zn in soil profiles of Fluvisols, Luvisols, Gleysols, and Calcisols originating from Germany and Egypt. Geoderma, 307, 122–138.

    Article  CAS  Google Scholar 

  • Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., et al. (2016). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research, 23(18), 17859–17879.

    Article  CAS  Google Scholar 

  • Sałata, A., & Dąbek, L. (2017). Sediments from stormwater drainage system as sorbents of organic and inorganic pollutants. In E3S Web of Conferences (Vol. 22, p. 00152). EDP Sciences.

  • Salomons, W., & Förstner, U. (1984). Sediments and the transport of metals. In Metals in the hydrocycle (pp. 63–98). Berlin: Springer.

    Chapter  Google Scholar 

  • Samanta, K., & Hazra, S. (2012). Landuse/landcover change study of Jharkhali Island Sundarbans, West Bengal using remote sensing and GIS. International Journal of Geomatics and Geosciences, 3(2), 299.

    Google Scholar 

  • Sany, S. B. T., Salleh, A., Sulaiman, A. H., Sasekumar, A., Tehrani, G. H. A. Z. A. L. E. H. M. O. N. A. Z. A. M. I., & Rezayi, M. A. J. I. D. (2012). Distribution characteristics and ecological risk of heavy metals in surface sediments of West Port, Malaysia. Environment Protection Engineering, 38(4), 139–155.

    CAS  Google Scholar 

  • Sarkar, S. K., Frančišković-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environment International, 30(8), 1089–1098.

    Article  CAS  Google Scholar 

  • Sarkar, S. K., Mondal, P., Biswas, J. K., Kwon, E. E., Ok, Y. S., & Rinklebe, J. (2017). Trace elements in surface sediments of the Hooghly (Ganges) estuary: Distribution and contamination risk assessment. Environmental Geochemistry and Health,  39(6), 1245–1258.

    Article  CAS  Google Scholar 

  • Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in southern California coastal shelf sediments. Marine Environmental Research, 48(2), 161–176.

    Article  CAS  Google Scholar 

  • Schneider, A. R., Cancès, B., Breton, C., Ponthieu, M., Morvan, X., Conreux, A., et al. (2016). Comparison of field portable XRF and aqua regia/ICPAES soil analysis and evaluation of soil moisture influence on FPXRF results. Journal of Soils and Sediments, 16(2), 438–448.

    Article  CAS  Google Scholar 

  • Selvaraju, R., Raman, R. G., Narayanaswamy, R., Valliappan, R., & Baskaran, R. (2009). Trace element analysis in hepatitis B affected human blood serum by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Romanian Journal Biophys, 19(1), 35–42.

    CAS  Google Scholar 

  • Shaheen, S. M., Shams, M. S., Khalifa, M. R., Mohamed, A., & Rinklebe, J. (2017). Various soil amendments and environmental wastes affect the (im) mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and Environmental Safety, 142, 375–387.

    Article  CAS  Google Scholar 

  • Shtangeeva, I. V. (1994). Variation of the elemental composition of plants and soils. Journal of Radioanalytical and Nuclear Chemistry, 177(2), 381–391.

    Article  CAS  Google Scholar 

  • Shtangeeva, I., Alber, D., Bukalis, G., Stanik, B., & Zepezauer, F. (2009). Multivariate statistical analysis of nutrients and trace elements in plants and soil from northwestern Russia. Plant and Soil, 322(1–2), 219–228.

    Article  CAS  Google Scholar 

  • Singh, A. K., & Singh, M. (2006). Lead decline in the Indian environment resulting from the petrol-lead phase out programme. Science of the Total Environment, 368(2–3), 686–694.

    Article  CAS  Google Scholar 

  • Subramanian, V. (1993). Phosphorus, silicon, and some trace contaminants in the Ganges Estuary. Estuaries and Coasts, 16(3), 453–458.

    Article  CAS  Google Scholar 

  • Subramanian, V., Jha, P. K., & Van Grieken, R. (1988). Heavy metals in the Ganges estuary. Marine Pollution Bulletin, 19(6), 290–293.

    Article  CAS  Google Scholar 

  • Subramanian, R., Subbramaniyan, P., & Raj, V. (2012). Determination of some minerals and trace elements in two tropical medicinal plants. Asian Pacific Journal of Tropical Biomedicine, 2(2), S555–S558.

    Article  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental geology, 39(6), 611–627.

    Article  CAS  Google Scholar 

  • Sutton, D. C., Gillan, F. T., & Susic, M. (1985). Naphthofuranonephytoalexins from the grey mangrove, Avicennia marina. Phytochemistry, 24(12), 2877–2879.

    Article  CAS  Google Scholar 

  • Swain, S. S., Ray, D. K., & Chand, P. K. (2012). ED-XRF spectrometry-based trace element composition of genetically engineered rhizoclones vis-à-vis natural roots of a multi-medicinal plant, butterfly pea (Clitoria ternatea L.). Journal of Radioanalytical and Nuclear Chemistry, 293(2), 443–453.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Tolonen, M. (1990). Vitamins and minerals in health and nutrition. New York: Elsevier.

    Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566–575.

    Article  Google Scholar 

  • Tyokumbur, E. T., & Okorie, T. (2011). Bioconcentration of trace metals in the tissues of two leafy vegetables widely consumed in South West Nigeria. Biological Trace Element Research, 140(2), 215–224.

    Article  CAS  Google Scholar 

  • Valentino, L. A. (2006). Heavy metal FIX for Christmas wounds. Blood, 108(9), 2888.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Watts, M. J., Mitra, S., Marriott, A. L., & Sarkar, S. K. (2017). Source, distribution and ecotoxicological assessment of multielements in superficial sediments of a tropical turbid estuarine environment: A multivariate approach. Marine Pollution Bulletin, 115(1), 130–140.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica etCosmochimica Acta, 59(7), 1217–1232.

    Article  CAS  Google Scholar 

  • Willey, N. J., & Fawcett, K. (2006). Inter-taxa differences in root uptake of 103/106 Ru by plants. Journal of Environmental Radioactivity, 86(2), 227–240.

    Article  CAS  Google Scholar 

  • Xie, J. T., Mehendale, S. R., Wang, A., Han, A. H., Wu, J. A., Osinski, J., et al. (2004). American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacological Research, 49(2), 113–117.

    Article  CAS  Google Scholar 

  • Yagi, S., AbdRahman, A. E., ELhassan, G. O., & Mohammed, M. A. (2013). Elemental analysis of ten sudanese medicinal plants using X-ray fluorescence. Journal of Applied and Industrial Sciences, 1(1), 49–53.

    CAS  Google Scholar 

  • Zeiner, M., Cindrić, I. J., Požgaj, M., Pirkl, R., Šilić, T., & Stingeder, G. (2015). Influence of soil composition on the major, minor and trace metal content of Velebit biomedical plants. Journal of Pharmaceutical and Biomedical Analysis, 106, 153–158.

    Article  CAS  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.

    Article  CAS  Google Scholar 

  • Zhang, J. E., Liu, J. L., Ouyang, Y., Liao, B. W., & Zhao, B. L. (2010). Removal of nutrients and heavy metals from wastewater with mangrove Sonneratia apetala Buch-Ham. Ecological Engineering, 36(6), 807–812.

    Article  Google Scholar 

  • Zhao, D., Wan, S., Yu, Z., & Huang, J. (2015). Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China. Environmental Earth Sciences, 74(6), 5097–5110.

    Article  CAS  Google Scholar 

  • Zhou, Y. W., Peng, Y. S., Li, X. L., & Chen, G. Z. (2011). Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environmental Earth Sciences, 64(3), 799–807.

    Article  CAS  Google Scholar 

  • Zhu, F., Chen, X., Yuan, Y., Huang, M., Sun, H., & Xiang, W. (2009). The chemical investigations of the mangrove plant Avicennia marina and its endophytes. The Open Natural Products Journal, 2(1), 24–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MB and PC are thankful to UGC, University of Calcutta and Government of West Bengal, India [Grant No. UGC/971/Fellow (Univ)]; SG and PC acknowledge DST, Government of India [Grant number SR/FT/LS-155/2011]; MB, SG and PC acknowledge UGC-DAE, Kolkata Centre for providing financial and infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhurima Bakshi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest among them.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshi, M., Ghosh, S., Ram, S.S. et al. Sediment quality, elemental bioaccumulation and antimicrobial properties of mangroves of Indian Sundarban. Environ Geochem Health 41, 275–296 (2019). https://doi.org/10.1007/s10653-018-0145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0145-5

Keywords

Navigation