Skip to main content

Advertisement

Log in

A follow-up study of the development of skin lesions associated with arsenic exposure duration

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Little information about the development of skin lesions in relation to arsenic exposure duration is available. Therefore, skin lesions in a cohort from the Bameng region of China were diagnosed in 2012 and 2017. The results indicated that the prevalence of hyperkeratosis, pigmentation and depigmentation in 2017 was 64.67, 6.67 and 12.67%. There were 42 and 34% of male subjects and female subjects suffered from skin lesions in 2012. Their morbidity rates were 10.43 and 8.98 per 1000 person-years. In 2017, the values were significantly increased. The prevalence and morbidity rate of skin lesions were positively correlated with age and arsenic levels in drinking water. Males had higher prevalence of skin lesions compared with female. However, the ≤ 40 years female group had higher prevalence of skin lesions. In addition, the increased rate of skin lesions prevalence was negatively correlated with arsenic levels in drinking water. The odds ratios (ORs) showed that the risks of skin lesions were positively associated with the proportion of inorganic arsenic (%iAs) and monomethylarsonic acid (%MMA) in urine, and negatively correlated with arsenic methylation capacity in both 2012 and 2017. It can be concluded that females immigrated from other areas were more susceptible to developing skin lesions. A certain cumulative arsenic exposure dose, which may be existing, significantly increased the prevalence of skin lesions. Longer arsenic exposure duration might elevate the toxicity of iAs to skin lesions and reduce the positive effects of arsenic methylation capacity on skin lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahsan, H., Chen, Y., Kibriya, M. G., Slavkovich, V., Jasmine, F., Gamble, M. V., et al. (2007). Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiology, Biomarkers and Prevention, 16, 1270–1278.

    Article  CAS  Google Scholar 

  • Bhattacharjee, P., Banerjee, M., & Giri, A. K. (2013). Role of genomic in stability in arsenic induced carcinogenicity: A review. Environment International, 53, 29–40.

    Article  CAS  Google Scholar 

  • Bräuner, E., Nordsborg, R. B., Andersen, Z. J., Tjonneland, A., Loft, S., & Raaschou-Nielsen, O. (2014). Long-term exposure to low-level arsenic in drinking water and diabetes incidence: A prospective study of the diet, cancer and health cohort. Environmental Health Perspectives, 122, 1059–1065.

    Article  Google Scholar 

  • Guo, X., Fujino, Y., Kaneko, S., Wu, K., Xia, Y., & Yoshimura, T. (2001). Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China. Molecular and Cellular Biochemistry, 222, 137–140.

    Article  CAS  Google Scholar 

  • IARC. (2004) Arsenic in drinking water. IARC monograph evaluation of carcinogenic risks to humans, Vol. 84, pp. 39–267.

  • Kapaj, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006). Human health effects from chronic arsenic poisoning—A review. Journal of Environmental Science and Health, Part A Environmental Science, 41, 2399–2428.

    Article  CAS  Google Scholar 

  • Karagas, M. R., Gossai, A., Pierce, B., & Ahsan, H. (2015). Drinking water arsenic contamination, skin lesions, and malignancies: A systematic review of the global evidence. Current Environmental Health Reports, 2, 52–68.

    Article  CAS  Google Scholar 

  • Kile, M. L., Hoffman, E., Rodrigues, E. G., Breton, C. V., Quamruzzaman, Q., Rahman, M., et al. (2011). A pathway-based analysis of urinary arsenic metabolites and skin lesions. American Journal of Epidemiology, 173, 778–786.

    Article  Google Scholar 

  • Li, L., Ekström, E. C., Goessler, W., Lönnerdal, B., Nermell, B., Yunus, M., et al. (2008). Nutritional status has marginal influence on the metabolism of inorganic arsenic in pregnant Bangladeshi women. Environmental Health Perspectives, 116, 315–321.

    Article  CAS  Google Scholar 

  • Li, X., Li, B., Xi, S., Zheng, Q., Wang, D., & Sun, G. (2013). Association of urinary monomethylated arsenic concentration and risk of hypertension: A cross-sectional study from arsenic contaminated areas in northwestern China. Environmental Health, 12, 37–46.

    Article  Google Scholar 

  • Lindberg, A. L., Ekström, E. C., Nermell, B., Rahman, M., Lönnerdal, B., Persson, L. A., et al. (2008a). Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environmental Research, 106, 110–120.

    Article  CAS  Google Scholar 

  • Lindberg, A. L., Rahman, M., Persson, L. Å., & Vahter, M. (2008b). The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicology and Applied Pharmacology, 230, 9–16.

    Article  CAS  Google Scholar 

  • Mazumder, D. N. G., Haque, R., Ghosh, N., De, B. K., Santra, A., Chakraborty, D., et al. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27, 871–877.

    Article  Google Scholar 

  • Melak, D., Ferreccio, C., Kalman, D., Parra, R., Acevedo, J., Perez, L., et al. (2014). Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile. Toxicology and Applied Pharmacology, 274, 225–231.

    Article  CAS  Google Scholar 

  • Mosaferi, M., Yunesian, M., Dastgiri, S., Mesdaghinia, A., & Esmailnasab, N. (2008). Prevalence of skin lesions and exposure to arsenic in drinking water in Iran. Science of the Total Environment, 390, 69–76.

    Article  CAS  Google Scholar 

  • Pan, W. C., Seow, W. J., Kile, M. L., Hoffman, E. B., Quamruzzman, Q., Rahman, M., et al. (2013). Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. American Journal of Epidemiology, 178, 1563–1570.

    Article  Google Scholar 

  • Pierce, B. L., Tong, L., Argos, M., Gao, J., Farzana, J., Roy, S., et al. (2013). Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction. International Journal of Epidemiology, 42, 1862–1872.

    Article  Google Scholar 

  • Rahman, M. M., Chowdhury, U. K., Mukherjee, S. C., Mondal, B. K., Paul, K., Lodh, D., et al. (2001). Chronic arsenic toxicity in Bangladesh and West Bengal, India—A review and commentary. Journal of Toxicology - Clinical Toxicology, 39, 683–700.

    Article  CAS  Google Scholar 

  • Rahman, M., Vahter, M., Sohel, N., Yunus, M., Wahed, M. A., Streatfield, P. K., et al. (2006a). Arsenic exposure and age- and sexspecific risk for skin lesions: A population-based case-referent study in Bangladesh. Environmental Health Perspectives, 114, 1847–1852.

    Article  CAS  Google Scholar 

  • Rahman, M., Vahter, M., Wahed, M. A., Sohel, N., Yunus, M., Streatfield, P. K., et al. (2006b). Prevalence of arsenic exposure and skin lesions. A population based survey in Matlab, Bangladesh. Journal of Epidemiology and Community Health, 60, 242–248.

    Article  Google Scholar 

  • Ren, X., McHale, C. M., Skibola, C. F., Smith, A. H., Smith, M. T., et al. (2010). An emerging role for epigenetic dysregulationin arsenic toxicity. Environmental Health Perspectives, 119, 11–19.

    Article  Google Scholar 

  • Rodríguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., et al. (2013). Groundwater arsenic contamination throughout China. Science, 341, 866–868.

    Article  Google Scholar 

  • Shen, H., Niu, Q., Xu, M., Rui, D., Xu, S., Feng, G., et al. (2016). Factors affecting arsenic methylation in arsenic-exposed humans: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 13, 205–222.

    Article  Google Scholar 

  • Somé, I. T., Sakira, A. K., Ouédraogom, M., Ouédraogo, T. Z., Traore, A., Sondo, B., et al. (2012). Arsenic levels in tube-wells water, food, residents’ urine and the prevalence of skin lesions in Yatenga province, Burkina Faso. Interdisciplinary Toxicology, 5, 38–41.

    Article  Google Scholar 

  • Sun, G., Xu, Y., Li, X., Jin, Y., Li, B., & Sun, X. (2007). Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia, China. Environmental Health Perspectives, 115, 648–652.

    Article  CAS  Google Scholar 

  • Torres-Sánchez, L., López-Carrillo, L., Rosado, J. L., Rodriguez, V. M., Vera-aguilar, E., Kordas, K., et al. (2016). Sex differences in the reduction of arsenic methylation capacity as a function of urinary total and inorganic arsenic in Mexican children. Environmental Research, 151, 38–43.

    Article  Google Scholar 

  • Tseng, C. H. (2007). Arsenic methylation, urinary arsenic metabolites and human diseases: Current perspective. Journal of Environmental Science and Health, Part C, 25, 1–22.

    Article  CAS  Google Scholar 

  • Tseng, C. H. (2009). A review on environmental factors regulating arsenic methylation in humans. Toxicology and Applied Pharmacology, 235, 338–350.

    Article  CAS  Google Scholar 

  • Valenzuela, O. L., Drobná, Z., Hernández-Castellanos, E., Sánchez-Penal, L. C., García-Vargas, G. G., Borja-Aburto, V. H., et al. (2009). Association of AS3MT polymorphisms and the risk of premalignant arsenic skin lesions. Toxicology and Applied Pharmacology, 239, 200–207.

    Article  CAS  Google Scholar 

  • Wei, B., Yu, J., Li, H., Yang, L., Xia, Y., Wu, K., et al. (2016). Arsenic metabolites and methylation capacity among individuals living in a rural area with endemic arseniasis in Inner Mongolia, China. Biological Trace Element Research, 170, 300–308.

    Article  CAS  Google Scholar 

  • Wei, B., Yu, J., Yang, L., Li, H., Chai, Y., Xia, Y., et al. (2017). Arsenic methylation and skin lesions in migrant and native adult women with chronic exposure to arsenic from drinking groundwater. Environmental Geochemistry and Health, 39, 89–98.

    Article  CAS  Google Scholar 

  • Wen, J., Wen, W., Li, L., & Liu, H. (2012). Methylation capacity of arsenic and skin lesions in smelter plant workers. Environmental Toxicology and Pharmacology, 34, 624–630.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (2001). United Nations synthesis report on arsenic in drinking water. Geneva: WHO.

    Google Scholar 

  • Yang, L., Chai, Y., Yu, J., Wei, B., Xia, Y., Wu, K., et al. (2017). Associations of arsenic metabolites, methylation capacity, and skin lesions caused by chronic exposure to high arsenic in tube well water. Environmental Toxicology, 32, 28–36.

    Article  CAS  Google Scholar 

  • Yang, L., Wang, W., Hou, S., Williams, W. P., & Peterson, P. J. (2002). Arsenism clinical stages and their relation with hair arsenic concentration of residents of Bayinmaodao district, Inner Mongolia, China. Environmental Geochemistry and Health, 24, 337–348.

    Article  CAS  Google Scholar 

  • Zhang, Q., Li, Y., Liu, J., Wang, D., Zheng, Q., & Sun, G. (2014). Differences of urinary arsenic metabolites and methylation capacity between individuals with and without skin lesions in Inner Mongolia, Northern China. International Journal of Environmental Research and Public Health, 11, 7319–7332.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was financially supported by the National Natural Science Foundation of China (Grant No. 41601559) and the State Key Program of National Natural Science Foundation of China (Grant No. 41230749).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hairong Li or Linsheng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Yu, J., Kong, C. et al. A follow-up study of the development of skin lesions associated with arsenic exposure duration. Environ Geochem Health 40, 2729–2738 (2018). https://doi.org/10.1007/s10653-018-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0136-6

Keywords

Navigation