Skip to main content

Advertisement

Log in

Geochemical valuation and intake of F, As, and Se in coal wastes contaminated areas and their potential impacts on local inhabitants, Shaanxi China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study probe the human health risk of fluoride (F), arsenic (As), and selenium (Se) and their daily intake available quantity to human through different sources in different regions of Shaanxi, China. For this purpose, a number of samples, including coal and coal wastes, rocks, soil, and vegetables were collected from south Qinling Mountain stone-like coal (Geo type-I), Binxian-Jurassic (Geo type-II), Hancheng Permo-Carboniferous (Geo type-III), and countryside (Huanglong County) of Shaanxi province. All these samples were analyzed through atomic fluorescence spectroscopy and combustion hydrolysis methods. Results showed that Geo type-I was enriched with As, Se, and F, Geo type-II, III, and the countryside were slightly enriched with As and F and deficient in Se. The average daily intake (ADI) of Se in Geo type-I was 0.005–0.0045, Geo type-II 0.0005–0.0004, Geo type-III 0.0006–0.0005, and countryside 0.0002–0.001 in mg kg−1 day−1 adult–children, respectively, which was lower than the optimum level (0.06–0.075 mg kg−1day−1). ADI of As at Geo type-I was 0.0085–0.0075, Geo type-II 0.004–0.0037, Geo type-III 0.0008, and countryside 0.00022–0.00019 in mg kg−1 day−1 adult–children, respectively, which was above the acceptable range (10−6–10−4). ADI of F at Geo type-I was 0.0047–0.0041, Geo type-II 0.0098–0.0087, Geo type-III 0.002–0.0017 and countryside 0.0015–0.0013 in mg kg−1 day−1 adult–children, respectively. The toxicity level of Se and F at all the regions was lower than the NOAEL and LOAEL, while As was higher at Geo type-II and I. The extreme deficient of Se than the optimum range along with high F could deregulate the normal body growth especially causes bones and joint problems. However, the study found a rare patient with bone and joint disease (maybe Kashin–Beck disease) in the countryside. To find the exact cause of Kashin–Beck disease, the study needs further medical investigation in Se-deficient regions and their association with selenium deficiency and enriched fluoride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ai, Z., Lu, W., Ton, S., Liu, H., Sou, T., & Shen, Z. (2007). Arsenic trioxide-mediated growth inhibition in gallbladder carcinoma cells via down-regulation of Cyclin D1 transcription mediated by Sp1 transcription factor. Biochemistry Biophysics Resource Communication, 360, 684–689. https://doi.org/10.1016/j.bbrc.2007.06.123.

    Article  CAS  Google Scholar 

  • Bai, X., Li, W., Chen, Y., & Jiang, Y. (2007). The general distributions of trace elements in Chinese coals. Coal Quality Technology, 1, 1–4. (in Chinese with English abstract).

    Google Scholar 

  • Baoshan, Z., Binbin, W., & Finkelman, R. B. (2010). Medical geology in China: Then and now. In O. Selinus, R. B. Finkelman, & J. A. Centeno (Eds.), Medical geology: A regional synthesis (pp. 303–327). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Cai, H., Di, X., Chang, S. X., Wang, C., Shi, B., Geng, P., et al. (2016a). Carbon storage, net primary production, and net ecosystem production in four major temperate forest types in northeastern China. Canadian Journal of Forest Research/Revue Canadienne de Recherche Forestiere, 46, 1–9. https://doi.org/10.1139/cjfr-2015-0038.

    Article  CAS  Google Scholar 

  • Cai, X., Wang, C., Yu, W., Fan, W., Wang, S., Shen, N., et al. (2016b). Selenium exposure and cancer Risk: An update meta-analysis and meta-regression. Scientific Reports, 6, 19213. https://doi.org/10.1038/srep19213.

    Article  CAS  Google Scholar 

  • Chen, J. (2012). An original discovery: Selenium deficiency and Keshan disease (an endemic heart disease). Asia Pacific Journal of Clinical Nutrition, 21(3), 320–326.

    Google Scholar 

  • Dai, S., Li, D., Chou, C.-L., Zhao, L., Zhang, Y., Ren, D., et al. (2008). Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia China. International Journal of Coal Geology, 74(3), 185–202. https://doi.org/10.1016/j.coal.2008.01.001.

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Chou, C.-L., Finkelman, R. B., Seredin, V. V., & Zhou, Y. (2012). Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, 3–21. https://doi.org/10.1016/j.coal.2011.02.003.

    Article  CAS  Google Scholar 

  • Du, Y., Luo, K., Ni, R., & Hussain, R. (2018). Selenium and hazardous elements distribution in plant–soil–water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0082-3.

    Article  Google Scholar 

  • EQSS. (1991). Environmental Quality Standards for Soil Pollution (EQSS). Ministry of the Environment Government of Japan Godochosha No. 5, 1-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8975, Japan. https://www.env.go.jp/en/water/soil/sp.html.

  • Feng, H., Zilong, Z., Hongxu, L., Ping, L., & Yafeng, L. (2017). Palaeogeomorphic restoring of the Jurassic Zhiluo Formation and its effect on uranium mineralization in Binxian areas, southern Ordos Basin. Journal of Palaeogeography, 19(4), 692–702.

    Google Scholar 

  • Finkelman, R. B. (1993). Trace and minor elements in coal. In M. H. Engel & S. A. Macko (Eds.), Organic Geochemistry (pp. 593–607). New York: Plenum press.

    Chapter  Google Scholar 

  • Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22(12), 9464–9474. https://doi.org/10.1007/s11356-015-4111-9.

    Article  CAS  Google Scholar 

  • Fu, L. P., Zhang, Z. F., & Xie, C. R. (2004). Cyrtograptid zones near the lower boundary of the Silurian Wenlock Series in Ziyang Shaanxi. Geological Bulletin of China, 23(8), 795–798.

    Google Scholar 

  • GB. (2005). Maximum levels of contaminants in food. National Food Safety Standard Guobiao (GB 2762-2005). Issued by Ministry of Health of the People’s Republic of China, Issued on January 25, 2005. https://www.chinesestandard.net/PDF/English.aspx/GB2762-2005.

  • GB. (2011). National Food Safety Standard General Principle for Prepackaged Food Label, Guobiao (GB 7718-2011). Issued by National Health and Family Planning Commission, Issued on: 2011-04-20. file:///C:/Users/Rahib%20Turi/Downloads/appendix-a2.pdf.

  • GB. (2012). National Food Safety Standard Maximum Levels of Contaminants in Food. Guobiao (GB 2762-2012). Issued by Ministry of Health of the People’s Republic of China, Issued on 13–11–2012.

  • Guo, Z. Q., Pan, L. H., Liu, X. Y., & Wang, J. (2001). Formation condition and distribution rule of Jurassic ancient landform oil field in Ordos Basin. China Petroleum Exploration, 6(4), 20–27.

    Google Scholar 

  • Han, D. X., Ren, D. Y., Wang, Y. B., Jin, K., Mao, H. L., & Qin, Y. (1996). Coal petrology of China. (Chinese with English abstract) (pp. 98–168). Xuzhou: Publishing House of China University of Mining and Technology.

    Google Scholar 

  • Hanjie, W., & Yuzhuo, Q. (1999). Geological setting of some classical selenium-bearing formations in China. Chinese Bulletin, 44, 185–186.

    Google Scholar 

  • Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18(4), 309–318. https://doi.org/10.1016/j.jtemb.2005.02.009.

    Article  CAS  Google Scholar 

  • He, B., Liang, L., & Jiang, G. (2002). Distributions of arsenic and selenium in selected Chinese coal mines. Science of the Total Environment, 296(1), 19–26. https://doi.org/10.1016/S0048-9697(01)01136-6.

    Article  CAS  Google Scholar 

  • Hurst, R., Armah, C., & Dainty, J. (2010). Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. The American Journal of Clinical Nutrition, 91(4), 923–931. https://doi.org/10.3945/ajcn.2009.28169.

    Article  CAS  Google Scholar 

  • Hussain, R., Khattak, S. A., Shah, M. T., & Ali, L. (2015). Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai Industrial Estate, Pakistan. Journal of Soils and Sediments, 15, 1119–1129. https://doi.org/10.1007/s11368-015-1075-9.

    Article  CAS  Google Scholar 

  • Hussain, R., Luo, K., Chao, Z., & Xiaofeng, Z. (2018). Trace elements concentration and distributions in coal and coal mining wastes and their environmental and health impacts in Shaanxi, China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-2148-2.

    Article  Google Scholar 

  • IRIS. (1987). Fluorine (soluble fluoride); CASRN 7782-41-4. U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0053_summary.pdf. Accessed 31 Jan 1987.

  • IRIS. (1991). Selenium and Compounds; CASRN 7782-49-2 U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0472_summary.pdf. Accessed 1 June 1991.

  • IRIS. (1995). Integrated Risk Information System (Arsenic, inorganic; CASRN 7440-38-2. U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0278_summary.pdf. Accessed 1 Mar 1994.

  • Jack, C. N., Wang, J., & Shraim, A. (2003). A global health problem caused by arsenic from natural sources. Chemosphere, 52(9), 1353–1359. https://doi.org/10.1016/S0045-6535(03)00470-3.

    Article  CAS  Google Scholar 

  • JeffersonLab. (2007). It’s elemental -the periodic table of elements. Archived from the original on 29 April. https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust. Accessed 14 Apr 2007.

  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2), 135–148. https://doi.org/10.1016/j.coal.2009.01.002.

    Article  CAS  Google Scholar 

  • Li, L., Luo, K.-L., Liu, Y.-L., & Xu, Y.-X. (2012a). The pollution control of fluorine and arsenic in roasted corn in “coal-burning” fluorosis area Yunnan, China. Journal of Hazardous Materials, 229–230(Supplement C), 57–65. https://doi.org/10.1016/j.jhazmat.2012.05.067.

    Article  CAS  Google Scholar 

  • Li, S., Xiao, T., & Zheng, B. (2012b). Medical geology of arsenic, selenium and thallium in China. Science of the Total Environment, 421(Supplement C), 31–40. https://doi.org/10.1016/j.scitotenv.2011.02.040.

    Article  CAS  Google Scholar 

  • Li, X. C., Liu, W. S., Jia, L. C., & Zhang, C. W. (2014). Prognosis of sandstones hosted uranium deposit in southern Ordos Basin. Uranium Geology, 30(6), 321–327.

    Google Scholar 

  • Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., et al. (2013a). Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Science of the Total Environment, 463–464, 530–540. https://doi.org/10.1016/j.scitotenv.2013.06.064.

    Article  CAS  Google Scholar 

  • Liu, Y., Luo, K., Li, L., & Shahid, M. Z. (2013b). Fluoride and sulfur dioxide indoor pollution situation and control in coal-burning endemic area in Zhaotong, Yunnan, China. Atmospheric Environment, 77, 725–737. https://doi.org/10.1016/j.atmosenv.2013.05.043.

    Article  CAS  Google Scholar 

  • Lu, Y., Sun, Z. R., Wu, L. N., Wang, X., Lu, W., & Liu, S. S. (2000). Effect of high-fluoride water on intelligence in children. Fluoride, 33(2), 74–78.

    CAS  Google Scholar 

  • Luo, K. (2005). Arsenic content and distribution pattern in Chinese coals. Toxicological and Environmental Chemistry, 87(4), 427–438. https://doi.org/10.1080/02772240500286418.

    Article  CAS  Google Scholar 

  • Luo, K. (2011). Arsenic and fluorine contents and distribution patterns of early paleozoic stonelike coal in the Daba Fold Zone and Yangtze plate, China. Energy and Fuels, 25, 4479–4487. https://doi.org/10.1021/ef200737s.

    Article  CAS  Google Scholar 

  • Luo, K., Li, L., & Zhang, S. X. (2011). Coal-burning roasted corn and chili as the cause of dental fluorosis for children in southwestern China. Journal of Hazardous Materials, 185(2–3), 1340–1347. https://doi.org/10.1016/j.jhazmat.2010.10.052.

    Article  CAS  Google Scholar 

  • Luo, K., Lirong, X., Jian, T., Douhu, W., & Lianhua, X. (2004a). Selenium source in the selenosis area of the Daba region, south Qinling Mountain, China. Environmental Geology, 45, 426–432. https://doi.org/10.1007/s00254-003-0893-z.

    Article  CAS  Google Scholar 

  • Luo, K., Ren, D., Xu, L., Dai, S., Cao, D., Feng, F., et al. (2004b). Fluorine content and distribution pattern in Chinese coals. International Journal of Coal Geology, 57(2), 143–149. https://doi.org/10.1016/j.coal.2003.10.003.

    Article  CAS  Google Scholar 

  • Luo, K., Xu, L., Li, R., & Xiang, L. (2002). Fluorine emission from combustion of steam coal of north China plate and northwest China. Chinese Science Bulletin, 47(16), 1346–1350. https://doi.org/10.1360/02tb9298.

    Article  CAS  Google Scholar 

  • Ministry of Environment. (2011). Soil, ground water and sediment standards for use under part XV.1 of the Environmental Protection Act. Canada, Ontario: Ministry of the Environment, Canada. PIBS #7382e01.

  • National Research Council. (2006). Fluoride in drinking water: A scientific review of EPA, #039; standards. Washington, DC: The National Academies Press.

    Google Scholar 

  • Ni, R., & Luo, K. (2015). Determination of total selenium and arsenic in coal by wet digestion hydride generation atomic fluorescence spectrometry (HG-AFS). Guang pu xue yu guang pu fen xi = Guang pu, 35(5), 1404–1408.

    CAS  Google Scholar 

  • Ni, R., Luo, K., Tian, X., Yan, S., Zhong, J., & Liu, M. (2016). Distribution and geological sources of selenium in environmental materials in Taoyuan County, Hunan Province China. Environmental Geochemistry and Health, 38(3), 927–938.

    Article  CAS  Google Scholar 

  • Palmer, C. A., & Lyons, P. C. (1996). Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal. International Journal of Coal Geology, 32(1), 151–166. https://doi.org/10.1016/S0166-5162(96)00035-3.

    Article  CAS  Google Scholar 

  • Ren, D., Zhao, F., Dai, S., Zhang, J., & Luo, K. (2006). Geochemistry of trace elements in coal (p. 556). Beijing.: Science Press. (in Chinese with English abstract).

    Google Scholar 

  • Rong, J. Y., Chen, X., Fan, J. X., & Zhan, R. B. (2005). Restudy of two of SilurianGSSPs: the base of the Silurian and the base of the Wenlock Series. Professional Papers of Stratigraphy and Palaeontology, 28, 41–60.

    Google Scholar 

  • Ren, Z. X., Shen, X. P., & Chen, F. L. (2014). Analysis on the geological features and ore-forming condition at southern margin of Ordos basin. World Nuclear Geosciences, 31(3), 514–518.

    Google Scholar 

  • SEPAC. (1995). Environmental quality standard for soils (GB 15618–1995). Beijing: State Environmental Protection Admisntratction of China (SEPAC).

    Google Scholar 

  • Shi, G. L., Lou, L. Q., Zhang, S., Xia, X. W., & Cai, Q. S. (2013). Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei China. Environmental Science and Pollution Research, 20(12), 8435–8445. https://doi.org/10.1007/s11356-013-1842-3.

    Article  CAS  Google Scholar 

  • Sørensen, K., Van den Broucke, S., Fullam, J., Doyle, G., Pelikan, J., Slonska, Z., et al. (2012). Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health, 12(1), 80. https://doi.org/10.1186/1471-2458-12-80.

    Article  Google Scholar 

  • Sun, D. J. (2004). Strengthen in the study of the hot spots about the prevention of endemic fluorosis. Chinese Journal of Endemiology, 23, 97–99.

    Google Scholar 

  • Tan, J. A., Zhu, W., Wang, W., Li, R., Hou, S., Wang, D., et al. (2002). Selenium in soil and endemic diseases in China. Science of the Total Environment, 284(1), 227–235. https://doi.org/10.1016/S0048-9697(01)00889-0.

    Article  CAS  Google Scholar 

  • Tang, W. C., He, J. P., Shi, Z. W., Zhu, B., & Jiang, H. (2002). An Investigation on arsenic surrounding and arsenic poisoning in endemic fluorosis of the type of burning coal pollution in Ankang city. China Journal Control of Endemic Disease, 17(2), 110–113.

    Google Scholar 

  • Tang, X. Y., & Huang, W. H. (2004). Trace element in China coals (pp. 1–193). Beijing: Commercial Publishing House Press. (in Chinese).

    Google Scholar 

  • Tang, Y., Chang, C., Zhang, Y., & Li, W. (2009). Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan Coalfield, Hebei Province China. Energy Exploration & Exploitation, 27(2), 143–152. https://doi.org/10.1260/0144-5987.27.2.143.

    Article  CAS  Google Scholar 

  • Tseng, C. H., Tseng, C. P., Chiou, H. Y., Hsueh, Y. M., Chong, C. K., & Chen, C. (2002). Epidemiologic evidence of diabetogenic effect of arsenic. Toxicology Letters, 133, 69–76. https://doi.org/10.1016/S0378-4274(02)00085-1.

    Article  CAS  Google Scholar 

  • USEPA. (2011). Exposure factors handbook, edition EPA/600/R-09/052F, published by United States Environmental Protection Agency (USEPA), Washington, DC: National Center for Environmental Assessment, Office of Research and Development.

  • Walpole, S. C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G., & Roberts, I. (2012). The weight of nations: an estimation of adult human biomass. BMC Public Health, 12(1), 439. https://doi.org/10.1186/1471-2458-12-439.

    Article  Google Scholar 

  • Wang, J. (2010). Late Paleozoic macrofloral assemblages from Weibei coalfield, with reference to vegetational change through the late Paleozoic ice-age in the North China block. International Journal of Coal Geology, 83, 292–317.

    Article  CAS  Google Scholar 

  • Wang, J. Q., Liu, C. Y., Guo, Z., & Zhang, D. D. (2015). Sedimentary response of regional tectonic transformation Late Triassic Yanchang period at the central and southern Ordos Basin. Earth Frontiers, 22(3), 194–204.

    Google Scholar 

  • Wang, R., Xu, Z., Santosh, M., Liang, F., & Fu, X. (2017). Petrogenesis and tectonic implications of the Early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: Constraints from geochemistry, zircon U–Pb geochronology and Hf isotopes. Tectonophysics, 712–713(Supplement C), 270–288. https://doi.org/10.1016/j.tecto.2017.05.021.

    Article  CAS  Google Scholar 

  • Wang, S. (1996). Coal accumulation and coal resource evaluation of Ordos Basin (p. 437). Beijing: China Coal Industry Publishing House. (in Chinese with English abstract).

    Google Scholar 

  • Wang, S., Luo, K., Wang, X., & Sun, Y. (2016). Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories. Environmental Pollution, 209, 107–113. https://doi.org/10.1016/j.envpol.2015.11.026.

    Article  CAS  Google Scholar 

  • Wang, Z., & Gao, Y. (2001). Biogeochemical cycling of selenium in Chinese environments. Applied Geochemistry, 16(11), 1345–1351. https://doi.org/10.1016/S0883-2927(01)00046-4.

    Article  CAS  Google Scholar 

  • WEC. (2013). World energy resources (p. 468).

  • Wu, D., Deng, H., Zheng, B., Wang, W., Tang, X., & Xiao, H. (2008). Iodine in Chinese coals and its geochemistry during coalification. Applied Geochemistry, 23(8), 2082–2090. https://doi.org/10.1016/j.apgeochem.2008.04.022.

    Article  CAS  Google Scholar 

  • Xiang, Q., Liang, Y., Zhou, M., & Zang, H. (2003). Blood lead of children in Wamiao–Xinhuai intelligence study. Fluoride, 36(3), 198–199.

    CAS  Google Scholar 

  • Xiong, Y. M., Mo, X. Y., Zou, X. Z., Song, R. X., Sun, W. Y., Lu, W., et al. (2010). Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin–Beck disease. Osteoarthritis Cartilage, 18(6), 817–824. https://doi.org/10.1016/j.joca.2010.02.004.

    Article  CAS  Google Scholar 

  • Xue, G., Liu, H., & Lia, W. (2012). Deformed coal types and pore characteristics in Hancheng coalmines in Eastern Weibei coalfields. International Journal of Mining Science and Technology, 22, 681–686. https://doi.org/10.1016/j.ijmst.2012.08.015.

    Article  Google Scholar 

  • Yang, L., Peterson, P. J., Williams, W. P., Wang, W., Li, R., & Tan, J. A. (2003). Developing environmental health indicators as policy tools for endemic fluorosis management in the People’s Republic of China. Environmental Geochemistry and Health, 25(3), 281–295. https://doi.org/10.1023/A:1024543819240.

    Article  CAS  Google Scholar 

  • Yao, Y., Liu, D., Tang, D., Tang, S., Che, Y., & Huang, W. (2009). Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin China. International Journal of Coal Geology, 78(1), 1–15. https://doi.org/10.1016/j.coal.2008.09.011.

    Article  CAS  Google Scholar 

  • You, C. F., & Xu, X. C. (2010). Coal combustion and its pollution control in China. Energy, 35(11), 4467–4472. https://doi.org/10.1016/j.energy.2009.04.019.

    Article  CAS  Google Scholar 

  • Yu, J., Qian, H., Li, Y., Wang, Y., Zhang, X., & Liang, X. (2007). Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecology Oncology, 106, 400–406. https://doi.org/10.1016/j.ygyno.2007.04.016.

    Article  CAS  Google Scholar 

  • Zhang, A. H., Yang, G. H., Li, J., & Wang, R. (2000). The situation of DNA synthesis, DNA damage and DNA repair in arsenism patients blood cells caused by coal-burning. Carcinogen Teratogen Mutagen, 12(2), 76–79. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ABJB200002003.htm.

  • Zhang, A. Y., Wu, D. M., Guo, L., & Wang, Y. L. (1987). The geochemistry of marine black shale formation and its metallogenic significance (pp. 1–39). Beijing: Science Publication House.

    Google Scholar 

  • Zhang, Y. J., & Da, Y. B. (2015). The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renewable and Sustainable Energy Reviews, 41(Supplement C), 1255–1266. https://doi.org/10.1016/j.rser.2014.09.021.

    Article  Google Scholar 

  • Zhao, F., Ren, D., Zheng, B., Hu, T., & Liu, T. (1998). Modes of occurrence of arsenic in high arsenic coal by extended X-ray absorption fine structure spectroscopy. Chinese Science Bulletin, 43, 1660–1663. https://doi.org/10.1007/BF02883414.

    Article  CAS  Google Scholar 

  • Zhao, J. X., Chen, H. D., & Shi, Z. Q. (2001). The way and implications of rebuilding paleogeomorphology; taking the research of paleogeomorphology of the Ordos Basin before Jurassic deposition as example. Journal of Chengdu University of Technology, 28(3), 260–266.

    Google Scholar 

  • Zhenmin, G., Taiyi, L., & Shengrong, L. (1997). The origin of metal-enriched layer in the black rock series. Geology and Geochemistry, 1, 18–23.

    Google Scholar 

  • Zhou, C., Liu, G., Cheng, S., Fang, T., & Lam, P. K. S. (2014). The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant. Scientific Reports, 4, 6221. https://doi.org/10.1038/srep06221. https://www.nature.com/articles/srep06221#supplementary-information.

  • Zhu, J. M., Zheng, B. S., Liu, S. R., Li, S. H., Su, H. C., & Mao, D. J. (2000). Some new forms of native selenium and their genetic investigation. Acta Mineralogica Sinica, 20(4), 337–341.

    CAS  Google Scholar 

Download references

Acknowledgements

The National Basic Research Program of China (Grant No. 2014CB238906, AA17202026), the National Natural Science Foundation of China (Grant Nos. 41172310 and 41472322) and CAS-TWAS Ph.D. fellowship, supported this study. The author also acknowledges the local guileless residents of Weibei, Shaanxi, for them allow us to go to their homes and farming fields to collect samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunli Luo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, R., Luo, K. Geochemical valuation and intake of F, As, and Se in coal wastes contaminated areas and their potential impacts on local inhabitants, Shaanxi China. Environ Geochem Health 40, 2667–2683 (2018). https://doi.org/10.1007/s10653-018-0131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0131-y

Keywords

Navigation