Spatial environmental risk evaluation of potential toxic elements in stream sediments

  • I. M. H. R. Antunes
  • M. T. D. Albuquerque
  • N. Roque
Original Paper
  • 10 Downloads

Abstract

Potential toxic elements (PTE), in stream sediments, were used as contamination indicators for the definition of high-/low-grade spatial clusters in the Monfortinho area (Central Portugal). A set of 271 stream sediment samples was used for spatial modelling and further definition of rings of enrichment—high and low rings. A three-step multivariate statistical and geostatistical approach was used: (1) principal components analysis for PTE’s association evaluation and dimensionality reduction; (2) ordinary kriging as an unbiased interpolator for content inference and construction of a continuous representation of the considered attributes, at any arbitrary spatial location; (3) G clustering algorithm for the definition of high and low significance clusters. A moderate contamination in stream sediments is observed for almost all the considered PTE and a very high contamination for Ba, Cr and B. High contamination clusters are observed for Fe, Ni, Ba, Cu, B, Zn, V—northwest and southeast clusters—and for Cr—north and southwest clusters. The contamination degree index varies from moderate to high, which is mainly associated with the old mineralizations. The high computed rings often overlap the areas of abandoned Ba–Zn mineralization, as well as the sedimentary gold concentrations, along the Erges River banks. Tin and Cd spatial distribution may be related to former cassiterite exploitations in the survey area. Chromium is possibly connected with the schists. The definition of clusters with a PTE spatial enrichment will allow for the identification of contamination activities and therefore, the definition of adequate monitoring and mitigation actions.

Keywords

Stream sediments Contamination factor Contamination degree Principal components analysis Ordinary kriging G clustering 

Notes

Acknowledgements

Our thanks are due to Prof. M.R. Machado Leite for the use of data on stream sediments from Instituto Geológico e Mineiro, S. Mamede de Infesta (Portugal). This work is co-funded by the European Union through the European Regional Development Fund, based on COMPETE 2020 (Programa Operacional da Competitividade e Internacionalização), project ICT (UID/GEO/04,683/2013) with reference POCI-01-0145-FEDER-007690 and national funds provided by Fundação para a Ciência e Tecnologia.

References

  1. Abreu, M. M., Matias, M. J., Clara, M., Magalhães, F., & Basto, M. J. (2008). Impacts on water, soil and plants from the abandoned Miguel Vacas copper mine, Portugal. Journal of Geochemical Exploration, 96, 161–170.CrossRefGoogle Scholar
  2. Albanese, S., Iavarro, P., Adamo, P., Lima, A., & De Vivo, B. (2013). Assessment of the environmental conditions of the Sarno river basin (south Italy): a stream sediment approach. Environmental Geochemistry and Health, 35, 283–297.CrossRefGoogle Scholar
  3. Albuquerque, M. T. D., Antunes, I. M. H. R., Seco, M. F. M., Roque, N., & Sanz, G. L. (2014). Uranium and arsenic spatial distribution in the Águeda watershed groundwater. Procedia Earth and Planetary Science, 8, 13–17.CrossRefGoogle Scholar
  4. Albuquerque, M. T. D., Gerassis, S., Sierra, C., Taboada, J., Martín, J. E., Antunes, I. M. H. R., et al. (2017). Developing a new Bayesian Risk Index for risk evaluation of soil contamination. Science of the Total Environment, 603–604, 167–177.  https://doi.org/10.1016/j.scitotenv.2017.06.068.CrossRefGoogle Scholar
  5. Alexakis, D. (2011). Diagnosis of stream sediment quality and assessment of toxic element contamination sources in East Attica, Greece. Environmental Earth Sciences, 63, 1369–1383.CrossRefGoogle Scholar
  6. Andrew, S., & Sutherland, R. A. (2004). Cu, Pb and Zn contamination in Nuuanu Watershed, Oahu, Hawaii. Science of the Total Environment, 324, 173–182.CrossRefGoogle Scholar
  7. Antunes, I. M. H. R., & Albuquerque, M. T. D. (2013). Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Science of the Total Environment, 442, 545–552.CrossRefGoogle Scholar
  8. Antunes, I. M. H. R., Albuquerque, M. T. D., & Sanches, F. A. N. (2014). Spatial risk assessment related to abandoned mining activities: an environmental management tool. Environmental Earth Sciences.  https://doi.org/10.1007/s12665-014-3170-4.Google Scholar
  9. Antunes, I. M. H. R., Gomes, M. E. P., Neiva, A. M. R., Carvalho, P. C. S., & Santos, A. C. T. (2016). Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W  >  Sn mine (NE Portugal). Ecotoxicology Environmental Safety, 133, 135–145.CrossRefGoogle Scholar
  10. Antunes, I. M. H. R., Neiva, A. M. R., & Silva, M. M. V. G. (2002). The mineralised veins and the impact of old mine workings on the environment at Segura, Central Portugal. Chemical Geology, 190(1-4), 417–431.CrossRefGoogle Scholar
  11. Antunes, I. M. H. R., Neiva, A. M. R., Silva, M. M. V. G., & Corfu, F. (2009). The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). Lithos, 111(3/4), 168–185.CrossRefGoogle Scholar
  12. Baptista Neto, J. A., Smith, B. J., & McAllister, J. J. (2000). Heavy metal concentrations in surface sediments in a near shore environmental, Jurujuba Sound, Southeast Brazil. Environmental Pollution, 109, 1–9.CrossRefGoogle Scholar
  13. Batata, C. (2006). Explorações mineiras antigas entre os rios Zêzere, Tejo e Ocreza. Atas do III Simpósio sobre Mineração e Metalurgia Históricas no Sudoeste Europeu, 21–23 de junho de 2005, Porto (pp. 67–77).Google Scholar
  14. Bertin, C., & Bourg, A. C. M. (1995). Trends in the heavy metal content (Cd, Pb, Zn) of river sediments in the drainage basin of smelting activities. Water Research, 29(7), 1729–1736.CrossRefGoogle Scholar
  15. Carvalho, P. C. S., Neiva, A. M. R., Silva, M. M. V. G., & Santos, A. C. T. (2016). Human health risks in a gold mining area with circum-neural drainage, central Portugal. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-016-9806-4.Google Scholar
  16. Chapman, R. J., & Mortensen, J. K. (2006). Application of microchemical characterization of placer gold grains to exploration for epithermal gold mineralization in regions of poor exposure. Journal of Geochemical Exploration, 91, 1–26.CrossRefGoogle Scholar
  17. Chapman, P. M., & Wang, F. Y. (1999). Appropriate applications of sediment quality values for metals and metalloids. Environment Science and Technology, 33, 3937–3941.CrossRefGoogle Scholar
  18. Chen, H., Chen, R., Teng, Y., & Wu, J. (2016). Contamination characteristics, ecological risk and source identification of trace metals in sediments on the Le´an River (China). Ecotoxicology and Environmental Safety, 125, 82–85.CrossRefGoogle Scholar
  19. Darwish, M. A. G., & Poellmann, H. (2010). Geochemical exploration for gold in the Nile valley Block (A) area, Wadi Allaqi, South Egypt. Chemie der Erde, 70, 353–362.CrossRefGoogle Scholar
  20. Dauvalter, V., & Rognerud, S. (2001). Heavy metal pollution in sediments of the Pasvik river drainage. Chemosphere, 42, 9–18.CrossRefGoogle Scholar
  21. Ferreira, A. M. P. J. (2000). Dados geoquímicos de base de sedimentos fluviais de amostragem de baixa densidade de Portugal Continental: Estudo de factores de variação regional. Unpublished Ph.D. thesis, Univ. Aveiro, Portugal.Google Scholar
  22. Ferreira da Silva, E., Serrano Pinto, L., Patinha, C., & Cardoso Fonseca, E. (2004). Site-specific characterization of Castromil Brownfield area related to gold mining activities. Environmental Geochemistry and Health, 26, 13–25.CrossRefGoogle Scholar
  23. Fletcher, W. K. (1997). Stream sediment geochemistry in today´s exploration world. In Gubins, A. G. (Ed.), Proceedings of exploration 97—4th decennial international conference on mineral exploration (pp. 249–260).Google Scholar
  24. Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24, 189–206.CrossRefGoogle Scholar
  25. Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high sulphide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18(9), 1347–1359.CrossRefGoogle Scholar
  26. González-Fernández, B., Rodríguez-Valdés, E., Boente, C., Menéndez-Casares, E., Fernández-Braña, A., & Gallego, J. R. (2018). Long-term ongoing impact of arsenic contamination on the environmental compartments of a former mining-metallurgy area. Science of the Total Environment, 610–611, 820–830.CrossRefGoogle Scholar
  27. Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford: University Press.Google Scholar
  28. Goovaerts, P., Albuquerque, T., & Antunes, I. M. H. R. (2014). A spatial statistical approach for sedimentary gold exploration: A Portuguese case study. Mathematics of Planet Earth, Lecture Notes in Earth System Sciences.  https://doi.org/10.1007/978-3-642-32408-6_119.Google Scholar
  29. Goovaerts, P., Albuquerque, M. T. D., & Antunes, I. M. H. R. (2016). A Multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration. Mathematical Geosciences.  https://doi.org/10.1007/s11004-015-9632-8.Google Scholar
  30. Gringarten, E., & Deutsch, C. V. (2001). Teacher’s aide variogram interpretation and modeling. Mathematical Geology, 33(4), 507–534.CrossRefGoogle Scholar
  31. Guo, W., Liu, X., Liu, Z., & Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia Environmental Science, 2, 729–736.CrossRefGoogle Scholar
  32. Håkanson, L. (1980). An Ecological Risk Index for aquatic pollution control—A sedimentological approach. Water Research, 14(8), 975–1001.CrossRefGoogle Scholar
  33. Holmström, H., & Öhlander, B. (2001). Layers rich in Fe- and Mn-oxyhydroxides formed at the tailings-pond water interface, a possible trap for trace metals in flooded mine tailings. Journal of Geochemical Exploration, 74(1/3), 189–203.CrossRefGoogle Scholar
  34. Hong, H., Yajuan, Y., & Xiaodong, W. (2004). Pollution of heavy metals in surface sediments from Huaihe River (Jiangsu Section) and its assessment of Potential Ecological Risk. Environmental Pollution Control, 26(3), 115–118.Google Scholar
  35. Instituto Geológico e Mineiro. (1988). Reports from a prospecting project for tungsten, tin and associated minerals from Góis-Segura. Metallic mineral prospecting section (p. 10). Lisbon: Oporto.Google Scholar
  36. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (pp. 278–322). Oxford: University Press.Google Scholar
  37. Jain, C. K., & Sharma, M. K. (2001). Distribution of trace metals in the Hindon river system, India. Journal of Hydrology, 253, 81–90.CrossRefGoogle Scholar
  38. Jordan, C., Zhang, C., & Higgins, A. (2007). Using GIS and statistics to study influences of geology on probability features of surface soil geochemistry in Northern Ireland. Journal of Geochemical Exploration, 93, 135–152.CrossRefGoogle Scholar
  39. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. San Diego: Academic Press.Google Scholar
  40. Karydas, C. G., Tzoraki, O., & Panagos, P. (2015). A new spatiotemporal risk index for heavy metals: application in cyprus. Water, 7(8), 4323–4342.  https://doi.org/10.3390/w7084323.CrossRefGoogle Scholar
  41. Matheron, G. (1971). The theory of regionalized variables and its applications. Les Cahiers du Centre de Morphologie Mathématique, no. 5, Ecole des Mines de Paris.Google Scholar
  42. McInnes, M., Greenough, J. D., Fryer, B. J., & Wells, R. (2008). Trace elements in native gold by solution IPC-MS442 and their use in mineral exploration: a British Columbia example. Applied Geochemistry, 23, 1076–1085.CrossRefGoogle Scholar
  43. Neiva, A. M. R., Antunes, I. M. H. R., Carvalho, P. C. S., & Santos, A. C. T. (2016). Uranium and arsenic contamination in the former Mondego Sul uranium mine area, Central Portugal. Journal of Geochemical Exploration, 162, 1–15.CrossRefGoogle Scholar
  44. Neiva, A. M. R., Carvalho, P. C. S., Antunes, I. M. H. R., Santos, A. C. T., & Cabral-Pinto, M. M. S. (2015). Spatial and temporal variability of surface water and groundwater before and after remediation of a Portuguese uranium mine area. Chemie der Erde – Geochemistry, 75(3), 345–356.CrossRefGoogle Scholar
  45. Neiva, A. M. R., Carvalho, P. C. S., Antunes, I. M. H. R., Silva, M. M. V. G., Santos, A. C. T., Pinto, M. M. S. C., et al. (2014). Contaminated waters, stream sediments and soils close to the Pinhal do Souto abandoned uranium mine, central Portugal. Journal of Geochemical Exploration, 136, 102–117.CrossRefGoogle Scholar
  46. Oliveira, J. T., Pereira, E., Ramalho, M., Antunes, M. T., & Monteiro, J. H. (1992). Carta Geológica de Portugal na escala 1/500 000 (5ª ed.). Lisboa: Serviços Geológicos de Portugal.Google Scholar
  47. Plant, J., Smith, D., Smith, B., & Williams, L. (2001). Environmental geochemistry at the global scale. Applied Geochemistry, 16, 1291–1308.CrossRefGoogle Scholar
  48. Qinna, Z., Qixin, X., & Kai, Y. (2005). Application of Potential Ecological Risk Index in soil pollution of typical polluting industries. Journal Eastchina Normal University (Natural Science), 1, 110–115.Google Scholar
  49. Rivoirard, J. (2005). Concepts and methods of geostatistics. Space, Structure and randomness. In M. Bilodeau, F. Meyer, & M. Schmitt (Eds.), Contributions in honor of Georges Matheron in the fields of geostatistics, random sets and mathematical morphology. ISBN: 978-0-387-20331-7.Google Scholar
  50. Romic, D., Romic, M., Zovko, M., Bakic, H., & Ondrasek, G. (2012). Trace metals in the coastal soils developed from estuarine foodplain sediments in the Croatian Mediterranean region. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-012-9449-z.Google Scholar
  51. Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., et al. (2005). FOREGS Geochemical Atlas of Europe. Methodology and maps (Part 1–526 pp. and Part 2–690 pp).Google Scholar
  52. Santos, A., Alonso, E., Callejon, M., & Jimenez, J. C. (2002). Heavy metal content and speciation in groundwater of the Guadiamar river basin. Chemosphere, 48, 279–285.CrossRefGoogle Scholar
  53. Santos Oliveira, J. M., Pedrosa, M. Y., Canto Machado, M. J., & Rochas Silva, J. (1998). Impacte ambiental provocado pela actividade mineira. Caracterização da situação junto da Mina de Jales, avaliação dos riscos e medidas de reabilitação. Actas do V Congresso Nacional de Geologia, 84(2), 74–77.Google Scholar
  54. Schwarz, S. (1933). Arqueologia mineira—Extrato dum Relatório Acerca de Pesquisas de Ouro, no Concelho de Idanha-a-Nova, Apresentado em Março de 1933, pela Empresa Mineira–Metalúrgica, Limitada. Boletim de Minas (pp. 35–38).Google Scholar
  55. Singh, M., Ansari, A. A., Müller, G., & Singh, I. B. (1997). Heavy metals in freshly deposited sediments of the Gomati river (a tributary of the Ganga river): Effects on human activities. Environmental Geology, 29, 246–252.CrossRefGoogle Scholar
  56. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream. Oahu, Hawaii, Environmental Geology, 39, 611–627.CrossRefGoogle Scholar
  57. Townley, B. K., Hérail, G., Maksaev, V., Palacios, C., de Parseval, P., Sepulveda, F., et al. (2003). Gold grain morphology and composition as an exploration tool: Application to gold exploration in covered areas. Geochemical Exploration Environmental Analytical, 3, 29–38.CrossRefGoogle Scholar
  58. Tzoraki, O., Karaouzas, I., Patrolecco, L., Skoulikidis, N., & Nikolaidis, N. (2015). Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metal occurrence in bed sediments of a Temporary River. Journal of Water, Air and Soil, 226, 421.  https://doi.org/10.1007/s11270-015-2671-4.CrossRefGoogle Scholar
  59. Verca, P., & Dolenec, T. (2005). Geochemical estimation of copper contamination in the Healing Mud from Makirina Bay, Central Adriatic. Environmental International, 31(1), 53–61.CrossRefGoogle Scholar
  60. Wenyl, H., Fengru, H., & Jingsheng, C. (1997). Comparative study of assessment method for river particulate heavy metal pollution. Science Geography Sinca, 17(1), 81–86.Google Scholar
  61. Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51, 633–642.CrossRefGoogle Scholar
  62. Zheng, N., Wang, Q. C., Liang, Z. Z., & Zheng, D. M. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154, 135–142.CrossRefGoogle Scholar
  63. Zuo, R., Carranza, E. J. M., & Wang, J. (2016). Spatial analysis and visualization of exploration geochemical data. Earth-Science Reviews, 158, 9–18.  https://doi.org/10.1016/j.earscirev.2016.04.006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • I. M. H. R. Antunes
    • 1
  • M. T. D. Albuquerque
    • 2
  • N. Roque
    • 3
  1. 1.ICT/University of MinhoCERENA/University of LisbonBragaPortugal
  2. 2.Instituto Politécnico de Castelo BrancoCERENA/University of LisbonLisbonPortugal
  3. 3.Instituto Politécnico de Castelo BrancoCastelo BrancoPortugal

Personalised recommendations