Skip to main content

Advertisement

Log in

Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03–0.25 h−1. The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h−1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight effective methods to reduce exposure to particles in office buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abhishek, G., & Cheong, K. W. D. (2007). Physical characterization of particulate matter and ambient meteorological parameters at different indoor–outdoor locations in Singapore. Building and Environment, 42(1), 237–245.

    Article  Google Scholar 

  • Abt, E., Suh, H. H., Allen, G., & Koutrakis, P. (2000). Characterization of indoor particle sources: A study conducted in the metropolitan Boston area. Environmental Health Perspectives, 108(1), 35–44.

    Article  CAS  Google Scholar 

  • Allen, R., Wallace, L., Larson, T., Sheppard, L., & Liu, L. J. S. (2007). Evaluation of the recursive model approach for estimating particulate matter infiltration efficiencies using continuous light scattering data. Exposure Science and Environmental Epidemiology, 17(5), 468–477.

    Article  CAS  Google Scholar 

  • Bennett, D. H., & Koutrakis, P. (2006). Determining the infiltration of outdoor particles in the indoor environment using a dynamic model. Journal of Aerosol Science, 37(6), 766–785.

    Article  CAS  Google Scholar 

  • Byrne, M. A., Goddard, A. J. H., Lange, C., & Roed, J. (1995). Stable tracer aerosol deposition measurements in a test chamber. Aerosol Science, 26, 645–653.

    Article  CAS  Google Scholar 

  • Chaloulakou, A., & Mavroidis, I. (2002). Comparison of indoor and outdoor concentrations of CO at a public school: Evaluation of an indoor air quality model. Atmospheric Environment, 36(11), 1769–1781.

    Article  CAS  Google Scholar 

  • Chao, C. Y. H., Wan, M. P., & Cheng, E. C. K. (2003). Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmospheric Environment, 37(30), 4233–4241.

    Article  CAS  Google Scholar 

  • Chen, C., Zhao, B., Zhou, W., Jiang, X. Y., & Tan, Z. C. (2012). A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Building and Environment, 47(1), 339–348.

    Article  Google Scholar 

  • Fogh, C. L., Byrne, M. A., Roed, J., & Goddard, A. J. H. (1997). Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios. Atmospheric Environment, 31, 2193–2203.

    Article  CAS  Google Scholar 

  • Franck, U., Herbarth, O., Wehner, B., Wiedensohler, A., & Manjarrez, M. (2010). How do the indoor size distributions of airborne submicron and ultrafine particles in the absence of significant indoor sources depend on outdoor distributions. Indoor Air, 13(2), 174–181.

    Article  Google Scholar 

  • Furtaw, E. J., Pandian, M. D., Nelson, D. R., & Behar, J. V. (1996). Modelling indoor air concentrations near emission sources in imperfectly mixed rooms. The Air and Waste Management Association, 46(9), 861–868.

    Article  CAS  Google Scholar 

  • Hamdani, S. E., Limam, K., Abadie, M. O., & Bendou, A. (2008). Deposition of fine particles on building internal surfaces. Atmospheric Environment, 42(39), 8893–8901.

    Article  Google Scholar 

  • Hinds, W. C. (1999). Properties, behaviour, and measurement of airborne particles. Journal of Aerosol Science, 31(9), 1121–1122.

    Google Scholar 

  • Hoek, G., Hanninen, O., & Cyrys, J. (2008). Indoor–outdoor relationships of particle number and mass in four European cities. Atmospheric Environment, 42(1), 156–169.

    Article  CAS  Google Scholar 

  • Howard-Reed, C., Wallace, L. A., & Ott, W. R. (2002). The effect of opening windows on air change rates in two homes. Journal of the Air and Waste Management Association, 52(2), 147–159.

    Article  CAS  Google Scholar 

  • Institute of Occupational Safety and Health (IOSH) in Taiwan, The Study on Deposition of Particle in the Local Respiratory System, IOSH in Taiwan, Taipei, Taiwan, 2012.

  • International Commission on Radiological Protection (ICRP), Human Respiratory Tract Model for Radiological Protection: a Report of a Task Group of the ICRP, Elsevier Science Health Science Division, 1994.

  • Kearney, J., Wallace, L. A., MacNeill, M., Xu, X., VanRyswyk, K., You, H., et al. (2011). Residential indoor and outdoor ultrafine particles in Windsor, Ontario. Atmospheric Environment, 45(40), 7583–7593.

    Article  CAS  Google Scholar 

  • Lai, A. C. K., & Nazaroff, W. W. (2000). Modelling indoor particle deposition from turbulent flow onto smooth surfaces. Aerosol Science, 31, 463–476.

    Article  CAS  Google Scholar 

  • Lai, A. C. K., & Nazaroff, W. W. (2005). Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmospheric Environment, 39, 4893–4900.

    Article  CAS  Google Scholar 

  • Lee, J. Y., Ryu, S. H., Lee, G., & Bae, G. N. (2016). Indoor-to outdoor particle concentration ratio model for human exposure analysis. Atmospheric Environment, 127, 100–106.

    Article  CAS  Google Scholar 

  • Li, Y., & Chen, Z. A. (2003). Balance-point method for assessing the effect of natural ventilation on indoor particle concentrations. Atmospheric Environment, 37, 4277–4285.

    Article  CAS  Google Scholar 

  • Liu, D. L., & Nazaroff, W. W. (2001). Modelling pollutant penetration across building envelopes. Atmospheric Environment, 35(26), 4451–4462.

    Article  CAS  Google Scholar 

  • Liu, D. L., & Nazaroff, W. W. (2003). Particle penetration through building cracks. Aerosol Science and Technology, 37, 565–573.

    Article  CAS  Google Scholar 

  • Long, C. M., Suh, H. H., & Koutrakis, P. (2000). Characterization of indoor particle sources using continuous mass and size monitors. The Air and Waste Management Association, 50(7), 1236–1250.

    Article  CAS  Google Scholar 

  • Long, C. M., Suh, H. H., Catalano, P. J., & Koutrakis, P. (2001). Using time-and size-resolved particulate data to quantify indoor penetration and deposition behaviour. Environmental Science and Technology, 35(10), 2089–2099.

    Article  CAS  Google Scholar 

  • Mleczkowska, A., Strojecki, M., Bratasz, U., & Kozłowski, R. (2016). Particle penetration and deposition inside historical churches. Building and Environment, 95, 291–298.

    Article  Google Scholar 

  • Mohammadyan, M., Ashmore, M., & Shabankhani, B. (2010). Indoor PM2.5 concentrations in the office, cafe, and home. International Journal of. Occupational Hygiene, 2(2), 57–62.

    Google Scholar 

  • Morawska, L., Ayoko, G. A., Bae, G. N., et al. (2017). Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 108, 75–83.

    Article  CAS  Google Scholar 

  • Mosley, R. B., Greenwell, D. J., Sparks, L. E., Guo, Z., Tucker, W. G., Fortmann, R., et al. (2001). Penetration of ambient fine particles into the indoor environment. Aerosol Science and Technology, 34(1), 127–136.

    Article  CAS  Google Scholar 

  • Nakorn, T., Khuntong, P., Nitatwichit, C., Khunatorn, Y., & Tantakitti, C. (2009). Indoor/outdoor relationships of size-resolved particle concentrations in naturally ventilated school environments. Building and Environment, 44(1), 188–197.

    Article  Google Scholar 

  • Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, 14, 175–183.

    Article  Google Scholar 

  • Nazaroff, W. W., & Cass, G. R. (1989). Mass-transport aspects of pollution removal at indoor surface. Environment International, 15(1), 567–584.

    Article  CAS  Google Scholar 

  • Oberdoerster, G. (2000). Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environment Health, 74(1), 1–8.

    Article  Google Scholar 

  • Offerman, F. J., Sextro, R. J., Fisk, F. J., Gimsrud, D. T., Nazaroff, W. W., Nero, A. V., et al. (1985). Control of repairable particles in indoor air with portable air cleaners. Atmosphere Environment, 19, 1761–1771.

    Article  Google Scholar 

  • Riain, C. M. N., Davies, D. M., Harrison, R. M., & Byrne, M. A. (2003). Averaging periods for indoor-outdoor ratios of pollution in naturally ventilated non-domestic buildings near a busy road. Atmospheric Environment, 37(29), 4121–4132.

    Article  Google Scholar 

  • Riley, W. J., Mckone, T. E., Lai, A. C., & Nazaroff, W. W. (2002). Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environmental Science and Technology, 36(2), 200–207.

    Article  CAS  Google Scholar 

  • Rim, D., Wallace, L., & Persily, A. (2010). Infiltration of outdoor ultrafine particles into a test house. Environmental Science and Technology, 44(15), 5908–5913.

    Article  CAS  Google Scholar 

  • Rim, D., Wallace, L., & Persily, A. (2013). Indoor ultrafine particles of outdoor origin: Importance of window opening area and fan operation condition. Environmental Science and Technology, 47(4), 1922–1929.

    Article  CAS  Google Scholar 

  • Thatcher, T. L., & Layton, D. W. (1995). Deposition, resuspension and penetration of particles within a residence. Atmospheric Environment, 29(13), 1487–1497.

    Article  CAS  Google Scholar 

  • Thatcher, T. L., Lai, A. C. K., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric Environment, 36(11), 1811–1819.

    Article  CAS  Google Scholar 

  • Thatcher, T. L., Lunden, M. M., Revznn, K. L., Sextro, R. G., & Brown, N. J. (2003). A concentration rebound method for measuring particle penetration and deposition in the indoor environment. Aerosol Science and Technology, 37(11), 847–864.

    Article  CAS  Google Scholar 

  • Thornburg, J., Ensor, D. S., Rodes, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R. B. (2001). Penetration of particles into buildings and associated physical factors. part I: Model development and computer simulations. Aerosol Science and Technology, 34(3), 284–296.

    Article  CAS  Google Scholar 

  • Tran, D. T., Alleman, L. Y., Coddeville, P., Galloo, J. C. (2017). Indoor particle dynamics in schools: Determination of air exchange rate, size-resolved particle deposition rate and penetration factor in real-life conditions. Indoor and Built Environment, 26(10), 1335–1350.

    Article  CAS  Google Scholar 

  • Vette, A. F., Rea, A. W., Lawless, P. A., Rodes, C. E., Evans, G., Highsmith, V. R., et al. (2001). Characterization of indoor–outdoor aerosol concentration relationships during the Fresno PM exposure studies. Aerosol Science and Technology, 34(1), 118–126.

    Article  CAS  Google Scholar 

  • Wallace, L. A., & Williams, R. (2005). Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration factor and outdoor exposure factor for individual homes and persons. Environment Science and Technology, 39(6), 1707–1714.

    Article  CAS  Google Scholar 

  • Wallace, L. A., Emmerich, S. J., & Howard-Reed, C. (2004). Effect of central fans and in-duct filters on deposition rates of ultrafine and fine particles in an occupied townhouse. Atmospheric Environment, 38, 405–413.

    Article  CAS  Google Scholar 

  • Xiong, M., & Gong, G. C. (2017). Influence of indoor air stability on suspended particle dispersion and deposition. Energy Procedia, 105, 4229–4235.

    Article  Google Scholar 

  • Xu, M. D., Nematollahi, M., Sextro, R. G., Gadgil, A. J., William, W., & Nazaroff, W. W. (1994). Deposition of tobacco smoke particles in a low ventilation room. Aerosol Science and Technology, 20(2), 194–206.

    Article  CAS  Google Scholar 

  • Yu, K. P., Yang, K. R., Chen, Y. C., Gong, J. Y., Chen, Y. P., Shih, H. C., et al. (2015). Indoor air pollution from gas cooking in five Taiwanese families. Building and Environment, 93, 258–266.

    Article  Google Scholar 

  • Zhang, M. W., Zhang, S. K., Feng, G. X., et al. (2017). Indoor airborne particle sources and outdoor haze days effect in urban office areas in Guangzhou. Environmental Research, 154, 60–65.

    Article  CAS  Google Scholar 

  • Zhao, B., & Wu, J. (2007). Particle deposition in indoor environments: Analysis of influencing factors. J Hazardous Mater, 147, 439–448.

    Article  CAS  Google Scholar 

  • Zhu, Y. F., Hinds, W. C., Krudysz, M., Froines, J., & Sioutas, C. (2005). Penetration of freeway ultrafine particle into indoor environments. Journal of Aerosol Science, 36(3), 303–322.

    Article  CAS  Google Scholar 

  • Zollner, I., Gabrio, T., & Link, B. (2007). Concentrations of particulate matter in schools in Southwest Germany. Inhalation Toxicology, 19, 245–249.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Shandong Province of P. R. China (ZR2016DM06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. C. Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, X.C., Zhao, J.J., Jing, Z. et al. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions. Environ Geochem Health 40, 2511–2524 (2018). https://doi.org/10.1007/s10653-018-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0116-x

Keywords

Navigation