Skip to main content

Advertisement

Log in

Uptake and accumulation of potentially toxic elements in colonized plant species around the world’s largest antimony mine area, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world’s largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17–106, 17–87, and 3–7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg−1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg−1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg−1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano, D. C. (1986). Trace elements in terrestrial environments. New York: Springer.

    Book  Google Scholar 

  • Anawar, H. M., Freitas, M. C., Canha, N., & Santa-Regina, I. (2011). Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species. Environmental Geochemistry and Health, 33, 353–362.

    Article  CAS  Google Scholar 

  • Appenroth, K. J., Krech, K., Keresztes, A., Fischer, W., & Koloczek, H. (2010). Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytostabilization. Chemosphere, 78, 216–223.

    Article  CAS  Google Scholar 

  • Aydi, A. (2015). Assessment of heavy metal contamination risk in soils of landfill of Bizerte (Tunisia) with a focus on application of pollution indicators. Environmental Earth Sciences, 74, 3019–3027.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy-metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements-a review of their translocation, ecology and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Baroni, F., Boscagli, A., & Protano, G. (2000). Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution, 109, 347–352.

    Article  CAS  Google Scholar 

  • Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K., & Abdeljaouad, S. (2013). Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma, 192, 227–236.

    Article  CAS  Google Scholar 

  • Čabala, R., Slováková, L., Zohri, M. E., & Frank, H. (2011). Accumulation and translocation of Cd metal and the Cd-induced production of glutathione and phytochelatins in Vicia faba L. Acta Physiologiae Plantarum, 33, 1239–1248.

    Article  Google Scholar 

  • Chen, T. B., Wei, C. Y., Huang, Z. C., Huang, Q. F., Lu, Q. G., & Fan, Z. L. (2002). Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chinese Science Bulletin, 47, 902–905.

    Article  CAS  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragmites australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresource Technology, 97, 158–170.

    Article  CAS  Google Scholar 

  • Cho, Y., Bolick, J. A., & Butcher, D. J. (2009). Phytostabilization of lead with green onions (Allium fistulosum) and uptake of arsenic compounds by moonlight ferns (Pteris cretica cv Mayii). Microchemical Journal, 91, 6–8.

    Article  CAS  Google Scholar 

  • Cobbett, C., & Goldbrough, P. B. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Faz, A., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain). Science of the Total Environment, 36, 1–11.

    Article  Google Scholar 

  • Fan, D., Zhang, T., & Ye, J. (2004). The Xikuangshan Sbdeposit hosted by the Upper Devonian black shale series, Hunan, China. Ore Geology Reviews, 24, 121–133.

    Article  Google Scholar 

  • Farago, M. E. & Merha, A. (1991). Uptake of elements by the copper-tolerant Plant Armeria maritime. In E. Merian (Ed.), Metal compounds in environment and life-interrelation between chemistry and biology proceedings of the fourth Hans Wolfgang Nürnberg memorial workshop 4 (pp. 163–169).

  • Feng, X., He, Y., Fang, J., Fang, Z., Jiang, B., & Brancourt-Hulmel, M. (2015). Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum. Spanish Journal of Agricultural Research, 61, 639–645.

    Google Scholar 

  • Fu, S., Wei, C., & Li, L. (2015). Characterizing the accumulation of various heavy metals in native plants growing around an old antimony mine. Human and Ecological Risk Assessment, 22, 52–55.

    Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A costeffective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A Comparative Study of Cadmium Phytoextraction by Accumulator and Weed Species. Environmental Pollution, 133, 365–371.

    Article  CAS  Google Scholar 

  • Grčman, H., Velikonja-Bolta, Š., Vodnik, D., Kos, B., & Leštan, D. (2001). EDTA enhanced heavy metal phytoextraction: Metal accumulation, leaching and toxicity. Plant and Soil, 235, 105–114.

    Article  Google Scholar 

  • Grispen, V. M., Nelissen, H. J., & Verkleij, J. A. (2006). Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils. Environmental Pollution, 144, 77–83.

    Article  CAS  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    Article  CAS  Google Scholar 

  • Haque, N., Peralta-Videa, J. R., Jones, G. L., Gill, T. E., & Gardea-Torresdey, J. L. (2008). Screening the phytostabilization potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environmental Pollution, 153, 362–368.

    Article  CAS  Google Scholar 

  • He, M. C. (2007). Translocation and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environmental Geochemistry and Health, 29, 209–219.

    Article  CAS  Google Scholar 

  • Ji, P., Sun, T., Song, Y., Ackland, M. L., & Liu, Y. (2011). Strategies for enhancing the phytostabilization of cadmium-contaminated agricultural soils by Solanum nigrum L. Environmental Pollution, 159, 762–768.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in plants. In A. Kabata-Pendias (Ed.), Trace elements in soils and plants (3rd ed., pp. 73–98). Boca Raton: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environmental Science and Pollution Research, 22(18), 13772–13799.

    Article  CAS  Google Scholar 

  • Krishna-Keshav, A., & Mohan-Rama, K. (2016). Translocation, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad, India. Environmental Earth Sciences, 75, 411–425.

    Article  Google Scholar 

  • Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2, 1–25.

    Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  Google Scholar 

  • Liu, W., Zhu, Y., Smith, F. A., & Smith, S. E. (2004). Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (oryza sativa L.) grown in solution culture? Journal of Experimental Botany, 55(403), 1707–1713.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic-a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature, 409, 579–590.

    Article  CAS  Google Scholar 

  • Mirshad, P. P., Chandran, S., & Puthur, J. T. (2014). Characteristics of bioenergy grasses important for enhanced NaCl tolerance potential. Russian Journal of Plant Physiology, 61, 639–645.

    Article  CAS  Google Scholar 

  • Moutaz, A., Al-Dabbas, L. A., & Ali, A. H. A. (2015). Determination of heavy metals and polycyclic aromatic hydrocarbon concentrations in soil and in the leaves of plant (Eucalyptus) of selected locations at Kirkuk-Iraq. Arabian Journal of Geosciences, 8, 3743–3753.

    Article  Google Scholar 

  • Nawab, J., Khan, S., Shah, M. T., Gul, N., Ali, A., Khan, K., et al. (2016). Heavy metal bioaccumulation in native plants in chromite impacted sites: A search for effective remediating plant species. CLEAN Soil, Air, Water, 44(1), 37–46.

    Article  CAS  Google Scholar 

  • Nawab, J., Khan, S., Shah, M. T., Qamar, Z., Din, I., Mahmood, Q., et al. (2015). Contamination of soil, medicinal, and fodder plants with lead and cadmium present in mine-affected areas, Northern Pakistan. Journal of Environmental Monitoring, 187, 605–626.

    Article  Google Scholar 

  • Ouvrard, S., Barnier, C., Bauda, P., Beguiristain, T., Biache, C., & Bonnard, M. (2011). In situ assessment of phytotechnologies for multicontaminated soil management. International Journal of Pharmaceutics, 13, 245–263.

    Google Scholar 

  • Pan, Y. M., & Yang, G. Z. (1988). Research method and background values of Hunan’s soil (p. 338). Beijing: Chinese Environmental Science Press. (in Chinese).

    Google Scholar 

  • Panwar, B. S., Ahmed, K. S., & Mittal, S. B. (2002). Phytostabilization of nickel-contaminated soils by Brassica species. Environment, Development and Sustainability, 4, 1–6.

    Article  Google Scholar 

  • Raskin, I., & Ensley, B. D. (Eds.). (2000). Phytostabilization of toxic metals using plants to clean up the environment. New York: Wiley.

    Google Scholar 

  • Rehman, Z. U., Khan, S., Brusseau, M. L., & Shah, M. T. (2017). Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of pakistan. Chemosphere, 168, 1589–1596.

    Article  CAS  Google Scholar 

  • Reshma, A., Chirakkara, C. C., & Krishna, R. (2016). Assessing the applicability of phytostabilization of soils with mixed organic and heavy metal contaminants. Reviews in Environmental Science & Biotechnology, 15, 299–326.

    Article  Google Scholar 

  • Ribeiro, J., da Silva, E. F., Li, Z., Ward, C., & Flores, D. (2010). Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro Coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. International Journal of Coal Geology, 83, 456–466.

    Article  CAS  Google Scholar 

  • Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., & Rincón, J. (2009). Heavy metal translocation and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90, 1106–1116.

    Article  Google Scholar 

  • She, W., Jie, Y. C., Xing, H. C., Huang, M., & Kang, W. L. (2010). Uptake and accumulation of heavy metal by ramie growing on antimony mineing area in Lengshuijiang City of Hunan Province. Journal of Agro-Environment Science, 29, 91–96.

    CAS  Google Scholar 

  • Stevens, P. J. G., Gaskin, R. E., Hong, S. O., & Zabkiewicz, J. A. (1991). Contributions of stomatal infiltration and penetration to enhancements of foliar uptake by surfactants. Pesticide Science, 33, 371–382.

    Article  CAS  Google Scholar 

  • Stoeva, N., & Bineva, T. (2003). Oxidative changes and photosynthesis in oat plants grown in as-contaminated soil. Bulgarian Journal of Plant Physiology, 29, 87–95.

    Google Scholar 

  • U.S. EPA. (1998). Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils and oils. In Draft update IVA of SW-846 on-line, Washington, DC. http://www.epa.gov/epaoswer/hazwaste/test/up4a.htm. Feb 2007.

  • Wang, X. Q., He, M. C., Xie, J., Xi, J. H., & Lu, X. F. (2010). Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). Journal of Soils and Sediments, 10, 827–837.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, Y., Zeng, G., Chai, L., Xiao, X., & Song, X. (2008). Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere, 72, 1260–1266.

    Article  CAS  Google Scholar 

  • Wei, C. Y., Deng, Q. J., Wu, F. C., Fu, Z. Y., & Xu, L. B. (2011). Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China. Biological Trace Element Research, 144, 1150–1158.

    Article  CAS  Google Scholar 

  • Wei, S., Li, Y., Zhou, Q., Srivastava, M., Chiu, S., & Zhan, J. (2010). Effect of fertilizer amendments on phytostabilization of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. Journal of Hazardous Materials, 176, 269–273.

    Article  CAS  Google Scholar 

  • Wei, C. Y., Sun, X., & Wang, C. (2006). Factors influencing arsenic accumulation by Pteris vittata: A comparative field study at two sites. Environmental Pollution, 141, 488–493.

    Article  CAS  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.

    Article  CAS  Google Scholar 

  • Xie, J. Q., Lei, M., Chen, T. B., Li, X. Y., Gu, M. H., & Liu, X. H. (2010). Phytostabilization of soil co-contaminated with arsenic, lead, zinc and copper using Pteris vittata L.: A field study. Acta Scientiae Circumstantiae, 30, 165–171.

    CAS  Google Scholar 

  • Xue, L., Liu, J., & Shi, S. (2014). Uptake of heavy metals by native herbaceous plants in an antimony mine (Hunan, China). Acta Hydrochimica et Hydrobiologica, 2014(42), 81–87.

    Google Scholar 

  • Yang, W. H., Li, H., Zhang, T. X., Sen, L., & Ni, W. Z. (2014). Classification and identification of metal-accumulating plant species by cluster analysis. Environmental Science and Pollution Research, 21, 10626–10637.

    Article  CAS  Google Scholar 

  • Yang, B., Zhou, M., Shu, W. S., Lan, C. Y., Ye, Z. H., Qiu, R. L., et al. (2010). Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage. Environmental Pollution, 158, 551–558.

    Article  CAS  Google Scholar 

  • Zabkiewicz, J. A., Forster, W. A., Steele, K. D., & Liu, Z. Q. (1995). Comparison of uptake into field bean (Vicia faba) and wheat (Triticum aestivum) of organosilicone and non-silicone surfactants. In R. E. Gaskin (Ed.), Proceedings of the 4th international symposium on adjuvants for agrochemicals, Melbourne (pp. 219–224).

  • Zhang, Z. Q., Shu, W. S., Lan, C. Y., & Wong, M. H. (2001). Soil seed bank as an input of seed source in revegetation of lead/zinc mine tailings. Restoration Ecology, 9, 1–8.

    Article  Google Scholar 

  • Zhou, J. M., Dang, Z., Cai, M. F., & Liu, C. Q. (2007). Soil heavy metal pollution around the Dabaoshan mine, Guangdong Province, China. Pedosphere, 17, 588–594.

    Article  CAS  Google Scholar 

  • Zhou, J. H., Yang, Q. W., Lan, C. Y., & Ye, Z. H. (2010). Heavy metal uptake and extraction potential of two Bechmeria nivea (L.) Gaud. (ramie) varieties associated with chemical reagents. Water, Air, and Soil pollution, 211, 359–366.

    Article  CAS  Google Scholar 

  • Zhou, C. F., Zhang, K., Lin, J. W., Li, Y., Chen, N. L., Zou, X. H., et al. (2015). Physiological responses and tolerance mechanisms to cadmium in Conyza canadensis. International Journal of Phytoremediation, 17, 280–289.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (41671475); Environmental Protection Department of Hunan Province (Xiangcai jianzhi (2016) 59); Education Department of Hunan Foundation (16C0225); and the Science Foundation of Heng Yang Normal University (15A03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J., Tan, D., Deng, S. et al. Uptake and accumulation of potentially toxic elements in colonized plant species around the world’s largest antimony mine area, China. Environ Geochem Health 40, 2383–2394 (2018). https://doi.org/10.1007/s10653-018-0104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0104-1

Keywords

Navigation