Skip to main content

Advertisement

Log in

Chemometric evaluation of heavy metal pollutions in Patna region of the Ganges alluvial plain, India: implication for source apportionment and health risk assessment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

While metal pollution and distribution in soil are well documented for many countries, the situation is more serious in developing countries because of the rapid increase in industrialization and urbanization during last decades. Although it is well documented in developed countries, data about substantial metal pollution in Indian soil, especially in eastern Ganges alluvial plain (GAP), are limited. In this study, eight different blocks of Patna district located in eastern GAP were selected to investigate the contamination, accumulation, and sources of metals in surface soil considering different land use types. Additionally, human health risk assessment was estimated to mark the potential carcinogenic and non-carcinogenic effect of metals in soil. The concentration of all metals (except Pb) in soil was below the Indian standard limit of the potential toxic element for agricultural soil. Pb was the most abundant in soil, followed by Zn and Cu, and accounted for 52, 33 and 8% of the total metal. In terms of land use types, roadside soil detected higher concentrations of all metals, followed by park/grassland soil. Principal component analysis results indicated traffic pollution and industrial emissions are the major sources of heavy metals in soil. This was further confirmed by strong inter-correlation of heavy metals (Cd, Cr, Ni, Cu and Pb). Human health risk assessment results indicated ingestion via soil as the primary pathway of heavy metal exposure to both adults and children population. The estimated hazard index was highest for Pb, suggesting significant non-carcinogenic effect to both adults and children population. The children were more prone to the non-carcinogenic effect of Pb than adults. However, relatively low cancer risk value estimated for all metals suggested non-significant carcinogenic risk in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachia, K., & Tainoshob, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environmental International, 30, 1009–1017.

    Article  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals. Concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Cadmium. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 100–124). Glasgow: Blackie and Son.

    Google Scholar 

  • Alloway, B. J. (1995). The origins of heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 38–57). New York: Blackie Academic and Professional Publisher.

    Chapter  Google Scholar 

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In B. J. Alloway (Ed.), Heavy Metals in Soils (pp. 11–50). Netherlands: Springer.

    Chapter  Google Scholar 

  • Ansari, A. A., Singh, I. B., & Tobschall, H. J. (1999). Status of anthropogenically induced metal pollution in the Kanpur-Unnao industrial region of the Ganga plain, India. Environmental Geology, 38, 25–33.

    Article  CAS  Google Scholar 

  • Awashthi, S. K. (2000). Prevention of food adulteration act no 37 of 1954. Central and state rules as amended for 1999 (3rd ed.). New Delhi: Ashoka Law House.

    Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., & Soltani, S. (2017). Heavy metal(loid)s in the groundwater of Shabestar area (Nw Iran): Source identification and health risk assessment. Exposure and Health. https://doi.org/10.1007/s12403-017-0267-5. (in press).

    Article  Google Scholar 

  • Barzegar, R., Moghaddam, A. A., & Tziritis, E. (2016). Assessing the hydrogeochemistry and water quality of the Aji-Chay River, northwest of Iran. Environmental Earth Science, 75, 1486.

    Article  Google Scholar 

  • Bednar, A. J., Jones, W. T., & Chappell, M. A. (2010). A modified acid digestion procedure for extraction of tungsten from soil. Talanta, 80(3), 1257–1263.

    Article  CAS  Google Scholar 

  • Beesley, L. (2012). Carbon storage and fluxes in existing and newly created urban soils. Journal of Environmental Management, 104, 158–165.

    Article  CAS  Google Scholar 

  • Bendl, R. F., Madden, J. T., & Regan, A. L. (2006). Mercury determination by cold vapor atomic absorption spectrometry utilizing UV photoreduction. Talanta, 68(4), 1366–1370.

    Article  CAS  Google Scholar 

  • Bocca, B., Alimonti, A., Petrucci, F., Violante, N., Sancesario, G., & Forte, G. (2004). Quantification of trace elements by sector field inductively coupled plasma spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease. Spectrochimica Acta B, 59, 559–566.

    Article  Google Scholar 

  • Bottoms, S. (2000). Cu probraze process in proving a hot technology. Materials World, 8, 1–18.

    Google Scholar 

  • Brown, S., Miltner, E., & Cogger, C. (2012). Carbon sequestration potential in urban soils. In R. Lal & B. Augustin (Eds.), Carbon Sequestration in Urban Ecosystems (pp. 173–196). New York, NY, USA: Springer.

    Chapter  Google Scholar 

  • Census of India. (2011). Administrative atlas of India. Office of the Registrar General & Census Commissioner, New Delhi. Available at http://www.Disabilityaffairs.gov.in/upload/uploadfiles/files/disabilityinindia2011data.pdf. Accessed December 27, 2013.

  • Chabukdhara, M., Munjal, A., Nema, A. K., Gupta, S. K., & Kaushal, R. (2016). Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2015.1105723.

    Article  Google Scholar 

  • Dantu, S. (2009). Heavy metals concentration in soils of southeastern part of Ranga Reddy district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 149, 213–222.

    Article  CAS  Google Scholar 

  • Das, P., & Tamminga, K. R. (2012). The Ganges and the GAP: An assessment of efforts to clean a sacred river. Sustainability, 4, 1647–1668.

    Article  Google Scholar 

  • Dasgupta, S. P. (1984). The Ganga basin, part II. New Delhi: Central Board for Prevention and Control of Water Pollution.

    Google Scholar 

  • de Miguel, E., Llamas, J. F., Chacon, E., Berg, T., Larssen, S., Royset, O., et al. (1997). Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmospheric Environment, 31, 2733–2740.

    Article  Google Scholar 

  • Devi, N. L., Yadav, I. C., Raha, P., Shihua, Yang, & Zhang, G. (2016). Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. Chemosphere, 144, 493–502.

    Article  CAS  Google Scholar 

  • Duggal, V., Rani, A., Mehra, R., & Balaram, V. (2017). Risk assessment of metals from groundwater in northeast Rajasthan. Journal of Geological Society of India, 90(1), 77–84.

    Article  CAS  Google Scholar 

  • Faruqui, N. H., Nagar, M., & Dutt, A. K. (1992). Geoenvironmental appraisal of parts of Ganga Basin, Uttar Pradesh. In I. B. Singh (Ed.), Gangetic plain: Terra incognita (pp. 49–53). Lucknow, India: Geology Department Lucknow University.

    Google Scholar 

  • Fovell, R., & Fovell, M. Y. (1993). Climate zones of the conterminous United State defined using cluster analysis. Journal of Climatology, 6(11), 2103–2135.

    Article  Google Scholar 

  • Geng, W., Nakajima, T., Takanashi, H., et al. (2008). Determination of mercury in ash and soil samples by oxygen flask combustion method–cold vapor atomic fluorescence spectrometry (CVAFS). Journal of Hazardous Materials, 154(1), 325–330.

    Article  CAS  Google Scholar 

  • Gopal, B. (2000). River conservation in the Indian subcontinent. In P. J. Boon, B. R. Davies, & G. E. Pelts (Eds.), Global perspectives on river conservation: Science, policy and practice (pp. 233–261). London: Wiley.

    Google Scholar 

  • Gowd, S., Ramakrishna, R. M., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.

    Article  CAS  Google Scholar 

  • Heinrich, A. (2007). The application of multivariate statistical methods for evaluation of soil profiles. Journal of Soil and Sediments, 7, 45–52.

    Article  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34, 807–816.

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bio-accessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5), 1215–1221.

    Article  CAS  Google Scholar 

  • Jiménez-Ballesta, R., García-Navarro, F., Bravo, S., Amorós, J., Pérez-de-los-Reyes, C., & Mejías, M. (2017). Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain). Environmental Geochemistry and Health, 39, 1159–1177.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2004). Soil–plant transfer of heavy metals—An environmental issue. Geoderma, 122, 43–149.

    Article  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1999). Biogeochemistry of trace elements (2nd ed.). Warsaw: PWN. (in polish).

    Google Scholar 

  • Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663.

    Article  Google Scholar 

  • Khillare, P. S., Hasan, A., & Sarkar, S. (2014). Accumulation and risks of polycyclic aromatic hydrocarbons and trace metals in tropical urban soils. Environmental Monitoring and Assessment, 186, 2907–2923.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2008). Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environmental Geology, 54, 1465–1472.

    Article  CAS  Google Scholar 

  • Kuang, C., Neumann, T., Norra, S., & Stuben, D. (2004). Land use-related chemical composition of street sediments in Beijing. Environmental Science and Pollution Research, 11, 73–83.

    Article  CAS  Google Scholar 

  • Lee, C. S., Li, X., Shi, W., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban and country park soils of Hong Kong: A study on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.

    Article  CAS  Google Scholar 

  • Li, X., & Huang, C. (2007). Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city, P. R. China. Environmental Geology, 52, 1631–1637.

    Article  CAS  Google Scholar 

  • Liu, R., Wang, M., Chen, W., & Peng, C. (2016). Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environmental Pollution, 210, 174–181.

    Article  CAS  Google Scholar 

  • Ljung, K., Otabbong, E., & Selinus, O. (2006). Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environmental Geochemistry and Health, 28, 353–364.

    Article  CAS  Google Scholar 

  • Lokhande, P. B., Patil, V. V., & Mujawar, H. A. (2008). Multivariate statistical analysis of ground water in the vicinity of Mahad industrial area of Konkan Region, India. International Journal of Applied Environmental Science, 3(2), 149–163.

    Google Scholar 

  • Madrid, L., Díaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49(10), 1301–1308.

    Article  CAS  Google Scholar 

  • Malik, R. N., Jadoon, W. A., & Husain, S. Z. (2010). Metal contamination of surface soils of industrial city Sialkot, Pakistan: A multivariate and GIS approach. Environmental Geochemistry and Health, 32, 179–191.

    Article  CAS  Google Scholar 

  • Markus, J. A., & Mabratney, A. B. (1996). An urban soil study: Heavy metals in Glebe, Australia. Soil Research, 34, 453–465.

    Article  CAS  Google Scholar 

  • McKenna, J. E. J. (2003). An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling and Software, 18(3), 205–220.

    Article  Google Scholar 

  • Mehr, M. R., Keshavarzi, B., Moore, F., Sharifi, R., Lahijanzadeh, A., & Kermani, M. (2017). Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan Province, Iran. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2017.04.026.

    Article  Google Scholar 

  • Mielke, H. W., Gonzales, C. R., Smith, M. K., & Mielke, P. W. (1999). The urban environment and children’s health: Soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environmental Research, A81, 117–129.

    Article  Google Scholar 

  • Mireles, A., Solis, C., Andrade, E., Lagunas-Solar, M., Pina, C., & Flocchini, R. G. (2004). Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico City. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 219–220, 187–190.

    Article  Google Scholar 

  • Moller, A., Muller, H. W., Abdullah, A., Abdelgawad, G., & Utermann, J. (2005). Urban soil pollution in Damascus, Syria: Concentrations and patterns of heavy metals in the soils of Damascus Ghouta. Geoderma, 124, 63–71.

    Article  CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letter, 8(3), 199–216.

    Article  CAS  Google Scholar 

  • Nimmo, J. W. (1998). New design radiators. Canadian Copper, 139, 8–9.

    Google Scholar 

  • Nriagu, J. O. (1990). A history of global metal pollution. Science, 272, 223–224.

    Article  Google Scholar 

  • Pejman, A., Bidhendi, G. N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373.

    Article  CAS  Google Scholar 

  • Praveena, S. M., Ismail, S. N. S., & Aris, A. Z. (2015). Health risk assessment of heavy metal exposure in urban soil from Seri Kembangan (Malaysia). Arabian Journal of Geosciences, 8(11), 9753–9761.

    Article  CAS  Google Scholar 

  • Qadir, A., Malik, R. N., & Husain, S. Z. (2008). Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140, 43–59.

    Article  CAS  Google Scholar 

  • Rachwal, M., Kardel, K., Magiera, T., & Bens, O. (2017). Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma, 295, 10–21.

    Article  CAS  Google Scholar 

  • Rahaman, M. M. (2009). Principles of transboundary water resources management and Ganges treaties: An analysis. International Journal of Water Resources Development, 25, 159–173.

    Article  Google Scholar 

  • Rajmohan, N., Prathapar, S. A., Jayaprakash, M., & Nagarajan, R. (2014). Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin. Environmental Monitoring and Assessment, 186, 5411–5427.

    Article  CAS  Google Scholar 

  • Raju, N. J., Ram, P., & Dey, S. (2009). Groundwater quality in the lower Varuna River basin, Varanasi district, Uttar Pradesh, India. Journal of Geological Society of India, 73, 178–192.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with. Chichester: Wiley.

    Book  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural top-soils in urban area. Environmental Geology, 43, 795–805.

    Article  CAS  Google Scholar 

  • Sayed, S., Ashour, A., & Youssef, G. I. (2003). Effect of sulfide ion on the corrosion behaviour Al-brass and Cu10Ni alloys in salt water. Material Chemistry and Physics, 78, 825–834.

    Article  CAS  Google Scholar 

  • Schneider, A. R., Morvan, X., Saby, N. P. A., Cancès, Be, Ponthieu, M., Gommeaux, M., et al. (2016). Multivariate spatial analyses of the distribution and origin of trace and major elements in soils surrounding a secondary lead smelter. Environmental Science and Pollution Research, 23, 1–11.

    Article  Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. M. (2007). Heavy metals contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66, 258–266.

    Article  CAS  Google Scholar 

  • Singh, S., Raju, N. J., & Nazneen, S. (2015). Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India. Environmental Monitoring and Assessment, 187, 1–12.

    Article  Google Scholar 

  • Sinha, S., Gupta, A. K., Bhatt, K., Pandey, K., Rai, U. N., & Singh, K. P. (2006). Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: Relation with physico-chemical properties of the soil. Environmental Monitoring and Assessment, 115, 1–22.

    Article  CAS  Google Scholar 

  • Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C., & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553(2016), 636–642. https://doi.org/10.1016/j.scitotenv.2016.02.101

    Article  CAS  Google Scholar 

  • Tziritis, E., Datta, P. S., & Barzegar, R. (2017). Characterization and assessment of groundwater resources in a complex hydrological basin of central Greece (Kopaida basin) with the joint use of hydrogeochemical analysis, multivariate statistics and stable isotopes. Aquatic Geochemistry, 23(4), 271–298.

    Article  Google Scholar 

  • Upadhyay, A. K., Gupta, K. K., Sircar, J. K., Deb, M. K., & Mundhara, G. L. (2006). Heavy metals in freshly deposited sediments of the river Subernarekha, India: An example of lithogenic and anthropogenic effects. Environmental Geology, 50, 397–403.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). (1989). Risk assessment guidance for superfund volume 1: Human health evaluation manual (part A) office of emergency and remedial response; Washington, DC, USA: (291 pp, 7 MB, 12/1989, EPA/540/1-89/002). https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part.

  • USEPA. (1997). Exposure factors handbook ( final report). Washington, DC: U.S. environmental protection agency, EPA/600/P-95/002F a-c, 1997. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=12464.

  • USEPA. (2001). Toxics release inventory: Public data release report. Accessed on 24 Feb 2015. Available online: www.epa.gov/tri/tridata/tri01.

  • USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites OSWER 9355.4-24. Washington, DC, USA: United States Environmental Protection Agency, 2002 EPA540/F-95/041. https://www.epa.gov/superfund/superfund-soil-screeningguidance.

  • USEPA. (2007). Framework for determining a mutagenic mode of action for carcinogenicity: Review draft. Available online: http://www.epa.gov/osa/mmoaframework/pdfs/MMOA-ERD-FINAL-83007.pdf. Accessed October 3, 2015.

  • USEPA. (2010). Integrated risk information system (IRIS); United States Environmental Protection Agency: Washington, DC, USA, 2010. Available online: www.epa.gov/ncea/iris/index.html. Accessed July 15, 2010.

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and prepared modification of the chronic acid titration method. Soil Science, 34, 29–38.

    Article  Google Scholar 

  • Wang, X., Qin, Y., & Sang, S. (2005). Accumulation and sources of heavy metals in urban topsoils: A case study from city of Xuzhou, China. Environmental Geology, 48, 101–107. https://doi.org/10.1007/s00254-005-1270-x.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.

    Article  CAS  Google Scholar 

  • Wei, X., Gao, B., Wang, P., Zhou, H., & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology Environmental Safety, 112, 186–192.

    Article  CAS  Google Scholar 

  • Wilcke, W., Muller, S., Kanchanakool, N., & Zech, W. (1998). Urban soil contamination in Bangkok: Heavy metal and aluminium portioning in topsoils. Geoderma, 86, 211–228.

    Article  CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., et al. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Geo Environmental & Climate Change Adaptation Research Centre, 2011, 20–21.

    Google Scholar 

  • Yadav, I. C., Devi, N. L., Mohan, D., Shihua, Q., & Singh, S. (2014). Assessment of groundwater quality with special reference to arsenic in Nawalparasi District, Nepal using multivariate statistical techniques. Environmental Earth Science, 72(1), 259–273.

    Article  CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., & Sing, S. (2015). Spatial and temporal variation in arsenic in the groundwater of upstream of Ganges River Basin, Nepal. Environmental Earth Science, 73(3), 1265–1279.

    Article  CAS  Google Scholar 

  • Yadav, S., & Rajamani, V. (2004). Geochemistry of aerosols of north-western parts of India adjoining Thar desert. Geochimica et Cosmochimica Acta, 68, 1975–1988.

    Article  CAS  Google Scholar 

  • Yaylah-Abnuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99, 82–92.

    Article  Google Scholar 

  • Zhang, C. S. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142, 501–511.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z., & McGrath, S. P. (2014). Soil contamination in China: Current status and mitigation strategies. Environmental Science and Technology, 49, 750–759.

    Article  Google Scholar 

  • Zhou, F., Guo, H., & Hao, Z. (2007). Spatial distribution of heavy metals in Hong Kong’s Marine sediments and their human impacts: A GIS based chemometric approach. Marine Pollution Bulletin, 54(9), 1372–1384.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by University Grant Commission (UGC), Government of India (No.F.30-68/2014 (BSR) to NL Devi as Start-Up-Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningombam Linthoingambi Devi or Ishwar Chandra Yadav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, N.L., Yadav, I.C. Chemometric evaluation of heavy metal pollutions in Patna region of the Ganges alluvial plain, India: implication for source apportionment and health risk assessment. Environ Geochem Health 40, 2343–2358 (2018). https://doi.org/10.1007/s10653-018-0101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0101-4

Keywords

Navigation